Your Input: | |||||
ilvE | Branched chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (312 aa) | ||||
ilvD | Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (578 aa) | ||||
leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (362 aa) | ||||
leuD | 3-isopropylmalate dehydratase small subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (216 aa) | ||||
leuC | 3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (473 aa) | ||||
APW40527.1 | Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (407 aa) | ||||
APW37218.1 | Thiamine pyrophosphate-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (566 aa) | ||||
ilvD-2 | Dihydroxy-acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (564 aa) | ||||
leuA | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. (512 aa) | ||||
ilvC | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (338 aa) | ||||
APW38211.1 | Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa) | ||||
APW38212.1 | Acetolactate synthase, large subunit, biosynthetic type; Derived by automated computational analysis using gene prediction method: Protein Homology. (604 aa) | ||||
APW38317.1 | Tartrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (362 aa) | ||||
APW39014.1 | Tartrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (369 aa) | ||||
leuD-2 | 3-isopropylmalate dehydratase small subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (226 aa) | ||||
APW39776.1 | 3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (470 aa) | ||||
APW40915.1 | Dihydroxy-acid dehydratase; Catalyzes the formation of 3-methyl-2-oxobutanoate from 2,3,-dihydroxy-3-methylbutanoate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (589 aa) | ||||
APW39948.1 | Tartrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (362 aa) | ||||
APW39971.1 | Branched-chain amino acid transferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa) |