STRINGSTRING
AOZ68195.1 AOZ68195.1 ribA ribA purH purH pyrF pyrF AOZ70841.1 AOZ70841.1 pyrB pyrB AOZ70843.1 AOZ70843.1 purL purL AOZ68562.1 AOZ68562.1 dut dut tdk tdk thyX thyX purM purM purN purN gpt gpt AOZ69047.1 AOZ69047.1 purC purC purS purS purQ purQ ndk ndk AOZ69405.1 AOZ69405.1 guaB guaB gmk gmk guaA guaA AOZ69533.1 AOZ69533.1 AOZ69544.1 AOZ69544.1 AOZ69554.1 AOZ69554.1 AOZ69572.1 AOZ69572.1 pyrC pyrC pyrE pyrE purF purF AOZ69691.1 AOZ69691.1 coaD coaD AOZ69743.1 AOZ69743.1 coaX coaX folE2 folE2 purD purD AOZ69834.1 AOZ69834.1 purA purA pyrG pyrG AOZ69897.1 AOZ69897.1 adk adk AOZ69953.1 AOZ69953.1 tmk tmk AOZ70114.1 AOZ70114.1 AOZ71069.1 AOZ71069.1 purE purE purK purK nusB nusB ribH ribH ribB ribB AOZ70193.1 AOZ70193.1 AOZ71079.1 AOZ71079.1 adk-2 adk-2 AOZ70319.1 AOZ70319.1 AOZ70320.1 AOZ70320.1 panC panC panB panB AOZ71117.1 AOZ71117.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AOZ68195.1Bifunctional folylpolyglutamate synthase/dihydrofolate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the folylpolyglutamate synthase family. (426 aa)
ribAGTP cyclohydrolase II; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate; Belongs to the GTP cyclohydrolase II family. (359 aa)
purHBifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (528 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (236 aa)
AOZ70841.1Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology. (425 aa)
pyrBAspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (321 aa)
AOZ70843.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0301 (AlgH) family. (186 aa)
purLPhosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (720 aa)
AOZ68562.1Bifunctional phosphopantothenoylcysteine decarboxylase/phosphopantothenate synthase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (400 aa)
dutDeoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (156 aa)
tdkThymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (193 aa)
thyXFAD-dependent thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. (304 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (348 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (195 aa)
gptXanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (167 aa)
AOZ69047.1Ribonucleoside-diphosphate reductase, adenosylcobalamin-dependent; Catalyzes the reduction of ribonucleotides to deoxyribonucleotides. May function to provide a pool of deoxyribonucleotide precursors for DNA repair during oxygen limitation and/or for immediate growth after restoration of oxygen. (1227 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (253 aa)
purSPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (79 aa)
purQPhosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (222 aa)
ndkNucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (140 aa)
AOZ69405.1Exopolyphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (371 aa)
guaBIMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (483 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (213 aa)
guaAGlutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (519 aa)
AOZ69533.1Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (183 aa)
AOZ69544.1Nucleoside triphosphate pyrophosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (277 aa)
AOZ69554.1GTP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (241 aa)
AOZ69572.12-dehydropantoate 2-reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. (301 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (346 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (226 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (490 aa)
AOZ69691.1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (434 aa)
coaDPantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (165 aa)
AOZ69743.12'-deoxycytidine 5'-triphosphate deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (359 aa)
coaXPantothenate kinase; Catalyzes the phosphorylation of pantothenate (Pan), the first step in CoA biosynthesis. (258 aa)
folE2GTP cyclohydrolase; Converts GTP to 7,8-dihydroneopterin triphosphate. (364 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (420 aa)
AOZ69834.1Thiamine diphosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (222 aa)
purAAdenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa)
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (547 aa)
AOZ69897.1Dihydroorotate dehydrogenase (quinone); Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (352 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (230 aa)
AOZ69953.1Ribonucleoside-diphosphate reductase, adenosylcobalamin-dependent; Catalyzes the reduction of ribonucleotides to deoxyribonucleotides. May function to provide a pool of deoxyribonucleotide precursors for DNA repair during oxygen limitation and/or for immediate growth after restoration of oxygen. (754 aa)
tmkdTMP kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (203 aa)
AOZ70114.1Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. (339 aa)
AOZ71069.1Diguanylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (304 aa)
purE5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (153 aa)
purK5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (354 aa)
nusBTranscription antitermination factor NusB; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (166 aa)
ribH6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin. (183 aa)
ribB3,4-dihydroxy-2-butanone-4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family. (377 aa)
AOZ70193.1Riboflavin synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (196 aa)
AOZ71079.1Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (355 aa)
adk-2Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (196 aa)
AOZ70319.1Bifunctional (p)ppGpp synthetase/guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (706 aa)
AOZ70320.12-amino-4-hydroxy-6- hydroxymethyldihydropteridine diphosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (194 aa)
panCPantoate--beta-alanine ligase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (279 aa)
panB3-methyl-2-oxobutanoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. (274 aa)
AOZ71117.1Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. (279 aa)
Your Current Organism:
Rhodobacter sp. LPB0142
NCBI taxonomy Id: 1850250
Other names: R. sp. LPB0142
Server load: low (16%) [HD]