node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ANJ53629.1 | ANJ53631.1 | PMA3_00095 | PMA3_00105 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.998 |
ANJ53629.1 | ANJ53632.1 | PMA3_00095 | PMA3_00110 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome B559 subunit alpha; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.999 |
ANJ53629.1 | ANJ54370.1 | PMA3_00095 | PMA3_04040 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.949 |
ANJ53629.1 | ANJ54371.1 | PMA3_00095 | PMA3_04045 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome B; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.960 |
ANJ53629.1 | ANJ54372.1 | PMA3_00095 | PMA3_04050 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.832 |
ANJ53629.1 | ANJ58160.1 | PMA3_00095 | PMA3_24525 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome o ubiquinol oxidase subunit IV; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.880 |
ANJ53629.1 | ANJ58162.1 | PMA3_00095 | PMA3_24535 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. | 0.962 |
ANJ53629.1 | ANJ58163.1 | PMA3_00095 | PMA3_24540 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome ubiquinol oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.929 |
ANJ53629.1 | cyoE-2 | PMA3_00095 | PMA3_24520 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. | 0.813 |
ANJ53631.1 | ANJ53629.1 | PMA3_00105 | PMA3_00095 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.998 |
ANJ53631.1 | ANJ53632.1 | PMA3_00105 | PMA3_00110 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome B559 subunit alpha; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.999 |
ANJ53631.1 | ANJ54370.1 | PMA3_00105 | PMA3_04040 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.947 |
ANJ53631.1 | ANJ54371.1 | PMA3_00105 | PMA3_04045 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome B; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.983 |
ANJ53631.1 | ANJ54372.1 | PMA3_00105 | PMA3_04050 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.885 |
ANJ53631.1 | ANJ58160.1 | PMA3_00105 | PMA3_24525 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome o ubiquinol oxidase subunit IV; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.941 |
ANJ53631.1 | ANJ58161.1 | PMA3_00105 | PMA3_24530 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.964 |
ANJ53631.1 | ANJ58163.1 | PMA3_00105 | PMA3_24540 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome ubiquinol oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.974 |
ANJ53631.1 | cyoE-2 | PMA3_00105 | PMA3_24520 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. | 0.908 |
ANJ53632.1 | ANJ53629.1 | PMA3_00110 | PMA3_00095 | Cytochrome B559 subunit alpha; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ANJ53632.1 | ANJ53631.1 | PMA3_00110 | PMA3_00105 | Cytochrome B559 subunit alpha; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.999 |