STRINGSTRING
THL1_999 THL1_999 THL1_1020 THL1_1020 hisG hisG tgt tgt pncB pncB cobT cobT purF purF THL1_2136 THL1_2136 ppnP ppnP mtgA mtgA THL1_2389 THL1_2389 THL1_2489 THL1_2489 pyrR pyrR apt apt THL1_4628 THL1_4628 THL1_4818 THL1_4818 upp upp hisF hisF hisH hisH xpt xpt pyrE pyrE trpD trpD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
THL1_999Hypothetical protein; Belongs to the multicopper oxidase YfiH/RL5 family. (241 aa)
THL1_1020Nicotinate-nucleotide pyrophosphorylase; Belongs to the NadC/ModD family. (282 aa)
hisGATP phosphoribosyltransferase catalytic subunit; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily. (211 aa)
tgttRNA-quanosine34 transglycosylase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form [...] (377 aa)
pncBNicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (401 aa)
cobTNicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase; Catalyzes the synthesis of alpha-ribazole-5'-phosphate from nicotinate mononucleotide (NAMN) and 5,6-dimethylbenzimidazole (DMB). (352 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (501 aa)
THL1_21365'-methylthioadenosine phosphorylase; Catalyzes the reversible phosphorylation of S-methyl-5'- thioinosine (MTI) to hypoxanthine and 5-methylthioribose-1-phosphate. Involved in the breakdown of S-methyl-5'-thioadenosine (MTA), a major by-product of polyamine biosynthesis. Catabolism of (MTA) occurs via deamination to MTI and phosphorolysis to hypoxanthine. (245 aa)
ppnPHypothetical protein; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions. (93 aa)
mtgAPeptidoglycan transglycosylase; Peptidoglycan polymerase that catalyzes glycan chain elongation from lipid-linked precursors; Belongs to the glycosyltransferase 51 family. (230 aa)
THL1_2389Dolichyl-phosphate-mannose-protein mannosyltransferase. (521 aa)
THL1_2489Hypothetical protein. (327 aa)
pyrRUracil phosphoribosyltransferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant. (170 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (182 aa)
THL1_4628Glycosyltransferase family protein. (478 aa)
THL1_4818Hypoxanthine-guanine phosphoribosyltransferase. (185 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (212 aa)
hisFImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (256 aa)
hisHImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (212 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (190 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (349 aa)
Your Current Organism:
Pseudomonas sp. TCUHL1
NCBI taxonomy Id: 1856685
Other names: P. sp. TCU-HL1, Pseudomonas sp. TCU-HL1
Server load: low (10%) [HD]