STRINGSTRING
LA_2440 LA_2440 hycE hycE LA_4276 LA_4276 LA_4273 LA_4273 nuoA nuoA nuoB nuoB nuoC nuoC nuoD nuoD nuoF nuoF nuoH nuoH nuoJ nuoJ nuoK nuoK nuoL nuoL nuoM nuoM nuoN nuoN nuoI nuoI nuoG nuoG
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
LA_2440Cytoplasmic membrane protein. (360 aa)
hycEMetal (Ni/Fe) hydrogenase large subunit. (466 aa)
LA_4276Formate hydrogenase subunit F. (402 aa)
LA_4273Formate hydrogenase subunit B. (573 aa)
nuoANADH dehydrogenase (ubiquinone) chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (125 aa)
nuoBNADH dehydrogenase (ubiquinone) chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (186 aa)
nuoCNADH dehydrogenase (ubiquinone) chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (178 aa)
nuoDNADH dehydrogenase (ubiquinone) chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (405 aa)
nuoFNADH dehydrogenase (ubiquinone) chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (443 aa)
nuoHNADH dehydrogenase (ubiquinone) chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (346 aa)
nuoJNADH dehydrogenase (ubiquinone) chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (233 aa)
nuoKNADH dehydrogenase (ubiquinone) chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (106 aa)
nuoLNADH dehydrogenase (ubiquinone) chain L. (653 aa)
nuoMNADH dehydrogenase (ubiquinone) chain M. (413 aa)
nuoNNADH dehydrogenase (ubiquinone) chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (512 aa)
nuoINADH dehydrogenase (ubiquinone) chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (175 aa)
nuoGNADH dehydrogenase (ubiquinone) chain G. (482 aa)
Your Current Organism:
Leptospira interrogans
NCBI taxonomy Id: 189518
Other names: L. interrogans serovar Lai str. 56601, Leptospira interrogans serovar Lai str. 56601
Server load: low (16%) [HD]