STRINGSTRING
rpsR-2 rpsR-2 rpsO rpsO rpsR rpsR rpsI rpsI rpsB rpsB rpsK rpsK rpsE rpsE rpsH rpsH rpsQ rpsQ rpsC rpsC rpsS rpsS rpsG rpsG
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpsR-230S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (81 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (96 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (78 aa)
rpsI30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. (170 aa)
rpsB30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. (296 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (134 aa)
rpsE30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (201 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (95 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (275 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (93 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
Your Current Organism:
Streptomyces sp. CC53
NCBI taxonomy Id: 1906740
Other names: S. sp. CC53
Server load: medium (46%) [HD]