Your Input: | |||||
AQT58987.1 | Aspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (415 aa) | ||||
AQT59281.1 | Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (479 aa) | ||||
AQT59542.1 | Phosphoserine phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa) | ||||
trpA | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (269 aa) | ||||
trpB | Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (408 aa) | ||||
asd | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (368 aa) | ||||
AQT59931.1 | Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa) | ||||
AQT59932.1 | Homoserine dehydrogenase; Catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa) | ||||
AQT60019.1 | 3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (391 aa) | ||||
AQT60020.1 | Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. (371 aa) | ||||
gcvP | Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (977 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (421 aa) | ||||
AQT60347.1 | Phosphoserine phosphatase SerB; Derived by automated computational analysis using gene prediction method: Protein Homology. (409 aa) | ||||
gcvT | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (362 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (130 aa) | ||||
ilvA | Threonine ammonia-lyase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (504 aa) | ||||
AQT60873.1 | D-3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (409 aa) | ||||
gpmI | Phosphoglycerate mutase (2,3-diphosphoglycerate-independent); Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (514 aa) | ||||
AQT61016.1 | Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa) | ||||
B0D95_16755 | Beta glucanase; Incomplete; partial on complete genome; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa) | ||||
ectA | Diaminobutyrate acetyltransferase; Catalyzes the acetylation of L-2,4-diaminobutyrate (DABA) to gamma-N-acetyl-alpha,gamma-diaminobutyric acid (ADABA) with acetyl coenzyme A. (196 aa) | ||||
AQT61694.1 | Diaminobutyrate--2-oxoglutarate transaminase; Catalyzes reversively the conversion of L-aspartate beta- semialdehyde (ASA) to L-2,4-diaminobutyrate (DABA) by transamination with L-glutamate; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (424 aa) | ||||
ectC | L-ectoine synthase; Catalyzes the circularization of gamma-N-acetyl-alpha,gamma- diaminobutyric acid (ADABA) to ectoine (1,4,5,6-tetrahydro-2-methyl-4- pyrimidine carboxylic acid), which is an excellent osmoprotectant. (131 aa) | ||||
AQT61755.1 | CDP-diacylglycerol--serine O-phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (277 aa) |