STRINGSTRING
mqo mqo OTG61335.1 OTG61335.1 sucD sucD sucC sucC OTG61379.1 OTG61379.1 OTG61380.1 OTG61380.1 OTG61567.1 OTG61567.1 sdhB sdhB OTG61382.1 OTG61382.1 OTG61383.1 OTG61383.1 OTG61384.1 OTG61384.1 OTG61385.1 OTG61385.1 OTG59866.1 OTG59866.1 pckG pckG mdh mdh OTG59393.1 OTG59393.1 acsA acsA fumC fumC ackA ackA OTG57919.1 OTG57919.1 OTG57926.1 OTG57926.1 glcB glcB OTG57102.1 OTG57102.1 OTG57103.1 OTG57103.1 ppc ppc OTG56922.1 OTG56922.1 OTG56415.1 OTG56415.1 OTG56416.1 OTG56416.1 OTG56417.1 OTG56417.1 OTG56418.1 OTG56418.1 maeA maeA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
mqoMalate dehydrogenase (quinone); Derived by automated computational analysis using gene prediction method: Protein Homology. (544 aa)
OTG61335.1Isocitrate lyase; Catalyzes the first step in the glyoxalate cycle, which converts lipids to carbohydrates; Derived by automated computational analysis using gene prediction method: Protein Homology. (534 aa)
sucDsuccinate--CoA ligase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (296 aa)
sucCsuccinate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa)
OTG61379.1Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (478 aa)
OTG61380.1Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (404 aa)
OTG61567.12-oxoglutarate dehydrogenase E1 component; Derived by automated computational analysis using gene prediction method: Protein Homology. (940 aa)
sdhBPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (236 aa)
OTG61382.1Succinate dehydrogenase flavoprotein subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (632 aa)
OTG61383.1Succinate dehydrogenase, hydrophobic membrane anchor protein; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (121 aa)
OTG61384.1Succinate dehydrogenase, cytochrome b556 subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (132 aa)
OTG61385.1Citrate (Si)-synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (424 aa)
OTG59866.1NADP-dependent malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (759 aa)
pckGPhosphoenolpyruvate carboxykinase (GTP); Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family. (610 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. (328 aa)
OTG59393.1propionyl-CoA--succinate CoA transferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (505 aa)
acsAacetate--CoA ligase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (647 aa)
fumCFumarate hydratase, class II; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (464 aa)
ackAAcetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (406 aa)
OTG57919.1Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (713 aa)
OTG57926.1Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family. (508 aa)
glcBMalate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA; Belongs to the malate synthase family. GlcB subfamily. (720 aa)
OTG57102.1Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (655 aa)
OTG57103.1Pyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (900 aa)
ppcPhosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (894 aa)
OTG56922.1Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (458 aa)
OTG56415.1ABC transporter substrate-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (320 aa)
OTG56416.1Alpha-ketoacid dehydrogenase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (339 aa)
OTG56417.1Diaminohydroxyphosphoribosylaminopyrimidine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (511 aa)
OTG56418.1Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (466 aa)
maeAMalic enzyme; oxaloacetate-decarboxylating; NAD-dependent; catalyzes the formation of pyruvate form malate; Derived by automated computational analysis using gene prediction method: Protein Homology. (566 aa)
Your Current Organism:
Acinetobacter sp. ANC4204
NCBI taxonomy Id: 1977884
Other names: A. sp. ANC 4204, Acinetobacter sp. ANC 4204
Server load: low (36%) [HD]