node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
fmt | gcvT | c4048 | c3485 | Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus. | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | 0.918 |
fmt | glyA | c4048 | c3073 | Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.920 |
fmt | purN | c4048 | c3018 | Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.919 |
gcvT | fmt | c3485 | c4048 | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus. | 0.918 |
gcvT | glyA | c3485 | c3073 | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.998 |
gcvT | purH | c3485 | c4964 | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | Purine biosynthesis protein PurH; Bifunctional; Escherichia coli K-12 ortholog: b4006; Escherichia coli O157:H7 ortholog: z5583; bifunctional; Phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase. | 0.936 |
gcvT | purN | c3485 | c3018 | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.933 |
gcvT | purU | c3485 | c1696 | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). | 0.927 |
glyA | fmt | c3073 | c4048 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus. | 0.920 |
glyA | gcvT | c3073 | c3485 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | 0.998 |
glyA | purH | c3073 | c4964 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Purine biosynthesis protein PurH; Bifunctional; Escherichia coli K-12 ortholog: b4006; Escherichia coli O157:H7 ortholog: z5583; bifunctional; Phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase. | 0.989 |
glyA | purN | c3073 | c3018 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.969 |
glyA | purU | c3073 | c1696 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). | 0.933 |
purH | gcvT | c4964 | c3485 | Purine biosynthesis protein PurH; Bifunctional; Escherichia coli K-12 ortholog: b4006; Escherichia coli O157:H7 ortholog: z5583; bifunctional; Phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase. | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | 0.936 |
purH | glyA | c4964 | c3073 | Purine biosynthesis protein PurH; Bifunctional; Escherichia coli K-12 ortholog: b4006; Escherichia coli O157:H7 ortholog: z5583; bifunctional; Phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.989 |
purH | purN | c4964 | c3018 | Purine biosynthesis protein PurH; Bifunctional; Escherichia coli K-12 ortholog: b4006; Escherichia coli O157:H7 ortholog: z5583; bifunctional; Phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.999 |
purN | fmt | c3018 | c4048 | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus. | 0.919 |
purN | gcvT | c3018 | c3485 | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. | 0.933 |
purN | glyA | c3018 | c3073 | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.969 |
purN | purH | c3018 | c4964 | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | Purine biosynthesis protein PurH; Bifunctional; Escherichia coli K-12 ortholog: b4006; Escherichia coli O157:H7 ortholog: z5583; bifunctional; Phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase. | 0.999 |