STRINGSTRING
gatA_3 gatA_3 guaA guaA purS purS purQ purQ purL purL gatC gatC gatA_1 gatA_1 gatB gatB asnO asnO asnB asnB gatA_4 gatA_4 cobB_2 cobB_2 nadE nadE carB_1 carB_1 carA_1 carA_1 carB_2 carB_2 carA_2 carA_2 ARK29324.1 ARK29324.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gatA_3Glutamyl-tRNA(Gln) amidotransferase subunit A. (410 aa)
guaAGMP synthase, glutamine-hydrolyzing; Catalyzes the synthesis of GMP from XMP. (513 aa)
purSPhosphoribosylformylglycinamidine synthase subunit PurS; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought [...] (83 aa)
purQPhosphoribosylformylglycinamidine synthase 1; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (227 aa)
purLPhosphoribosylformylglycinamidine synthase 2; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (741 aa)
gatCAspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (96 aa)
gatA_1Glutamyl-tRNA(Gln) amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (485 aa)
gatBAspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa)
asnOAsparagine synthetase [glutamine-hydrolyzing] 3. (615 aa)
asnBAsparagine synthetase [glutamine-hydrolyzing] 1. (634 aa)
gatA_4Glutamyl-tRNA(Gln) amidotransferase subunit A; Belongs to the amidase family. (478 aa)
cobB_2Cobyrinic acid A,C-diamide synthase; Catalyzes the ATP-dependent amidation of the two carboxylate groups at positions a and c of cobyrinate, using either L-glutamine or ammonia as the nitrogen source; Belongs to the CobB/CbiA family. (459 aa)
nadENH(3)-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source; Belongs to the NAD synthetase family. (277 aa)
carB_1Carbamoyl-phosphate synthase large chain; Belongs to the CarB family. (1063 aa)
carA_1Carbamoyl-phosphate synthase small chain; Belongs to the CarA family. (370 aa)
carB_2Carbamoyl-phosphate synthase arginine-specific large chain. (1050 aa)
carA_2Carbamoyl-phosphate synthase arginine-specific small chain; Belongs to the CarA family. (359 aa)
ARK29324.1glutamyl-tRNA(Gln) amidotransferase subunit E. (147 aa)
Your Current Organism:
Bacillus krulwichiae
NCBI taxonomy Id: 199441
Other names: B. krulwichiae, Bacillus krulwichiae Yumoto et al. 2003, Bacillus krulwichii, IAM 15000, JCM 11691, NBRC 102362, NCIMB 13904, strain AM31D
Server load: low (18%) [HD]