STRINGSTRING
TWT_008 TWT_008 deoD deoD pccB pccB purK purK purE purE rmlD rmlD rmlB rmlB tyrA tyrA cmk cmk ubiE ubiE lysS lysS panC panC menD menD menA menA guaB1 guaB1 guaB2 guaB2 guaA guaA purN purN purH purH dxr dxr pyrG pyrG nadK nadK purC purC menB menB manA manA gcvB gcvB coaA coaA tgt tgt TWT_155 TWT_155 metE metE pheS pheS pheT pheT tyrS tyrS proS proS ispG ispG prsA prsA glmU glmU pyrB pyrB ilvD ilvD ilvB ilvB ilvC ilvC ilvE ilvE gltS gltS TWT_215 TWT_215 pyrD pyrD acp acp fabH fabH aceE aceE panB panB glnA glnA thrS thrS pdxS pdxS pdxT pdxT relA relA dgt dgt pyk pyk coaE coaE gap gap pgk pgk tpi tpi gpi gpi zwf zwf cysS1 cysS1 ispDF ispDF argS argS metK metK dfp dfp gmk gmk pyrF pyrF carB carB carA carA pyrC pyrC aroD aroD aroB aroB aroK aroK aroF aroF alaS alaS leuS leuS ribD ribD nadE nadE atpC atpC atpD atpD atpG atpG atpA atpA atpH atpH atpF atpF atpE atpE atpB atpB thrB thrB thrC thrC thrA thrA pyrH pyrH lipA lipA nadD nadD ndkA ndkA folC folC ileS ileS valS valS dxs dxs dut dut gnd gnd alr alr cobQ cobQ glyQS glyQS murA murA adk adk coaD coaD aroA aroA ribF ribF folPXK folPXK folE folE hpt hpt TWT_593 TWT_593 ispE ispE glmS glmS thyX thyX TWT_621 TWT_621 TWT_623 TWT_623 pca pca folD folD glyA glyA gcvH gcvH gcvT gcvT ispH1 ispH1 TWT_649 TWT_649 gpm gpm ilvA ilvA nrdB nrdB trpS trpS ribG ribG TWT_689 TWT_689 ribA ribA ribH ribH tmk tmk asd asd ask ask TWT_720 TWT_720 purF purF purM purM purD purD serS serS TWT_731 TWT_731 umpA umpA proC proC aspS aspS metS metS eno eno hisS hisS dcd dcd purB purB purA purA TWT_793 TWT_793 purL purL purQ purQ purS purS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TWT_008Unknown. (233 aa)
deoDPurine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (294 aa)
pccBpropionyl-CoA carboxylase beta chain. (525 aa)
purKPhosphoribosylaminoimidazole carboxylase ATPase subunit; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR); Belongs to the PurK/PurT family. (484 aa)
purEPhosphoribosylaminoimidazole carboxylase catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (180 aa)
rmlDdTDP-4-dehydrorhamnose reductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. (287 aa)
rmlBdTDP-glucose 4,6-dehydratase; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily. (327 aa)
tyrAPrephenate dehydrogenase. (378 aa)
cmkCytidylate kinase/GTP-binding protein fusion; GTPase that plays an essential role in the late steps of ribosome biogenesis; Belongs to the cytidylate kinase family. Type 1 subfamily. (686 aa)
ubiEUbiquinone/menaquinone biosynthesis methyltransferase; Methyltransferase required for the conversion of demethylmenaquinol (DMKH2) to menaquinol (MKH2). (239 aa)
lysSlysyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (545 aa)
panCPantoate--beta-alanine ligase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (288 aa)
menD2-oxoglutarate decarboxylase; Catalyzes the thiamine diphosphate-dependent decarboxylation of 2-oxoglutarate and the subsequent addition of the resulting succinic semialdehyde-thiamine pyrophosphate anion to isochorismate to yield 2- succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC). Belongs to the TPP enzyme family. MenD subfamily. (527 aa)
menA1,4-dihydroxy-2-naphthoate octaprenyltransferase; Conversion of 1,4-dihydroxy-2-naphthoate (DHNA) to demethylmenaquinone (DMK); Belongs to the MenA family. Type 1 subfamily. (303 aa)
guaB1Inosine-5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (491 aa)
guaB2Inosine-5'-monophosphate dehydrogenase-like protein. (384 aa)
guaAGMP synthase; Catalyzes the synthesis of GMP from XMP. (503 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (215 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase. (542 aa)
dxr1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP); Belongs to the DXR family. (368 aa)
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (545 aa)
nadKInorganic polyphosphate/ATP-NAD kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (301 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Belongs to the SAICAR synthetase family. (305 aa)
menBNaphthoate synthase; Converts o-succinylbenzoyl-CoA (OSB-CoA) to 1,4-dihydroxy-2- naphthoyl-CoA (DHNA-CoA); Belongs to the enoyl-CoA hydratase/isomerase family. MenB subfamily. (305 aa)
manAMannose-6-phosphate isomerase; Belongs to the mannose-6-phosphate isomerase type 1 family. (504 aa)
gcvBGlycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (968 aa)
coaAPantothenate kinase. (251 aa)
tgtQueuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form t [...] (404 aa)
TWT_155Unknown; Involved in the import of queuosine (Q) precursors, required for Q precursor salvage; Belongs to the vitamin uptake transporter (VUT/ECF) (TC 2.A.88) family. Q precursor transporter subfamily. (211 aa)
metE5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (822 aa)
pheSphenylalanyl-tRNA synthetase alpha chain; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (336 aa)
pheTphenylalanyl-tRNA synthetase beta chain; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (962 aa)
tyrStyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (471 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (613 aa)
ispG1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family. (380 aa)
prsARibose-phosphate pyrophosphokinase. (348 aa)
glmUPutative UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family. (605 aa)
pyrBAspartate carbamoyltransferase; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. (406 aa)
ilvDDihydroxy-acid dehydratase; Belongs to the IlvD/Edd family. (569 aa)
ilvBAcetolactate synthase large subunit. (581 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (333 aa)
ilvEBranched-chain amino acid aminotransferase. (361 aa)
gltSglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (480 aa)
TWT_215Phospho-2-dehydro-3-deoxyheptonate aldolase; Belongs to the class-II DAHP synthase family. (472 aa)
pyrDDihydroorotate oxidase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (335 aa)
acpAcyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis; Belongs to the acyl carrier protein (ACP) family. (82 aa)
fabH3-oxoacyl-[acyl-carrier-protein] synthase III; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Its substrate specificity determines the biosynthesis of branched-chain and/or straight-chain of fatty acids (By similarity); Belongs to the thiolase-like superfamily. FabH family. (367 aa)
aceEPyruvate dehydrogenase E1 component; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (933 aa)
panB3-methyl-2-oxobutanoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. (272 aa)
glnAGlutamine synthetase. (482 aa)
thrSthreonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr). (640 aa)
pdxSPyridoxine biosynthesis enzyme-like protein; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family. (287 aa)
pdxTAmidotransferase; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS. (188 aa)
relAGTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (745 aa)
dgtdGTP triphosphohydrolase; Belongs to the dGTPase family. Type 2 subfamily. (479 aa)
pykPyruvate kinase; Belongs to the pyruvate kinase family. (473 aa)
coaEdephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (252 aa)
gapGlyceraldehyde 3-phosphate dehydrogenase; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (337 aa)
pgkPhosphoglycerate kinase; Belongs to the phosphoglycerate kinase family. (395 aa)
tpiTriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (293 aa)
gpiGlucose-6-phosphate isomerase. (551 aa)
zwfGlucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (487 aa)
cysS1cysteinyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (466 aa)
ispDFIspD; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl-D- erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4- diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C- methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF); In the N-terminal section; belongs to the IspD/TarI cytidylyltransferase family. IspD subfamily. (422 aa)
argSarginyl-tRNA synthetase. (552 aa)
metKS-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (395 aa)
dfpFlavoprotein; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (417 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (304 aa)
pyrFOrotidine-5'-phosphate decarboxylase; Belongs to the OMP decarboxylase family. Type 2 subfamily. (303 aa)
carBCarbamoyl-phosphate synthase large chain; Belongs to the CarB family. (1103 aa)
carACarbamoyl-phosphate synthase small chain; Belongs to the CarA family. (381 aa)
pyrCDihydroorotase. (428 aa)
aroD3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (162 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. (380 aa)
aroKShikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (169 aa)
aroFChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (400 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (880 aa)
leuSleucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (806 aa)
ribD5-amino-6-(5-phosphoribosylamino)uracil reductase. (231 aa)
nadENH(3)-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (291 aa)
atpCATP synthase epsilon chain. (94 aa)
atpDATP synthase beta chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (477 aa)
atpGATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (336 aa)
atpAATP synthase alpha chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (554 aa)
atpHATP synthase delta chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (327 aa)
atpFATP synthase B chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (172 aa)
atpEATP synthase C chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (75 aa)
atpBATP synthase A chain; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (271 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (335 aa)
thrCThreonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (350 aa)
thrAHomoserine dehydrogenase. (489 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (231 aa)
lipALipoic acid synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (354 aa)
nadDNicotinate-nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (201 aa)
ndkANucleoside diphosphate kinase. (136 aa)
folCDihydrofolate synthase; Belongs to the folylpolyglutamate synthase family. (461 aa)
ileSisoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1066 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner. (856 aa)
dxs1-deoxyxylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (629 aa)
dutDeoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (146 aa)
gnd6-phosphogluconate dehydrogenase; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (476 aa)
alrAlanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family. (386 aa)
cobQCobyric acid synthase. (259 aa)
glyQSglycyl-tRNA synthetase alpha chain and beta chain. (1024 aa)
murAUDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (441 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (186 aa)
coaDPantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (176 aa)
aroA3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (486 aa)
ribFRiboflavin kinase; FMN adenylyltransferase; Belongs to the ribF family. (312 aa)
folPXK7,8-dihydroneopterin aldolase/epimerase/oxygenase; DHPS/FolB/HPPK; implicated resistence to sulfonamide. (766 aa)
folEGTP cyclohydrolase I. (181 aa)
hptHypoxanthine-guanine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (183 aa)
TWT_593Holo-[acyl-carrier protein] synthase; Belongs to the P-Pant transferase superfamily. (280 aa)
ispE4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. (467 aa)
glmSGlucosamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (616 aa)
thyXThymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. (244 aa)
TWT_621Unknown; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (193 aa)
TWT_623Unknown; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (442 aa)
pcaPyruvate carboxylase; Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. (1131 aa)
folDMethylenetetrahydrofolate dehydrogenase NADP+; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (295 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (428 aa)
gcvHGlycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (121 aa)
gcvTAminomethyltransferase. (356 aa)
ispH1IspH protein 1; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. Belongs to the IspH family. (322 aa)
TWT_649Hexulose-6-phosphate synthase. (226 aa)
gpmPhosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (221 aa)
ilvAThreonine deaminase. (427 aa)
nrdBRibonucleotide reductase beta chain; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides; Belongs to the ribonucleoside diphosphate reductase small chain family. (327 aa)
trpStryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (335 aa)
ribGDiaminohydroxyphosphoribosylaminopyrimidine deaminase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (371 aa)
TWT_689Dipeptide ABC transporter substrate-binding-like protein; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate. Belongs to the DHBP synthase family. (215 aa)
ribADipeptide ABC transporter substrate-binding-like protein; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate; Belongs to the GTP cyclohydrolase II family. (211 aa)
ribHRiboflavin synthase beta chain; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin. (156 aa)
tmkThymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (199 aa)
asdAspartate-semialdehyde dehydrogenase; Belongs to the aspartate-semialdehyde dehydrogenase family. (337 aa)
askAspartate kinase; Belongs to the aspartokinase family. (418 aa)
TWT_720Unknown. (147 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (504 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase. (337 aa)
purDPhosphoribosylamine--glycine ligase; GARS; Belongs to the GARS family. (419 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (417 aa)
TWT_731uroporphyrinogen-III synthase-like protein; Catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III. (241 aa)
umpAOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (214 aa)
proCPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (296 aa)
aspSaspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 2 subfamily. (446 aa)
metSmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (583 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (446 aa)
hisShistidyl-tRNA synthetase. (426 aa)
dcddCTP deaminase; Bifunctional enzyme that catalyzes both the deamination of dCTP to dUTP and the hydrolysis of dUTP to dUMP without releasing the toxic dUTP intermediate. (196 aa)
purBAdenylosuccinate lyase. (481 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (429 aa)
TWT_793Putative chorismate mutase protein. (105 aa)
purLPhosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (780 aa)
purQPhosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (226 aa)
purSUnknown; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in the transfer of the ammonia molecul [...] (134 aa)
Your Current Organism:
Tropheryma whipplei
NCBI taxonomy Id: 203267
Other names: T. whipplei str. Twist, Tropheryma whipplei Twist, Tropheryma whipplei str. Twist, Tropheryma whipplei strain Twist
Server load: low (14%) [HD]