Your Input: | |||||
HEAR1115 | Putative Cytochrome c oxidase, subunit II (Cytochrome bb3 subunit 2) CoxM; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (400 aa) | ||||
coxN | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (586 aa) | ||||
HEAR1117 | Putative cytochrome c oxidase subunit III CoxO; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (216 aa) | ||||
coxP | Cytochrome-c oxidase; Function of homologous gene experimentally demonstrated in an other organism; enzyme. (230 aa) | ||||
HEAR1119 | Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (105 aa) | ||||
nuoN | NADH-ubiquinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (494 aa) | ||||
nuoM | NADH-quinone oxidoreductase subunit M; Function of homologous gene experimentally demonstrated in an other organism; enzyme. (496 aa) | ||||
nuoL | NADH-quinone oxidoreductase subunit L (NADH dehydrogenase I subunit L) (NDH-1 subunit L); Function of homologous gene experimentally demonstrated in an other organism; enzyme. (687 aa) | ||||
nuoK | NADH-quinone oxidoreductase subunit K (NADH dehydrogenase I subunit K) (NDH-1 subunit K); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa) | ||||
nuoJ | NADH-quinone oxidoreductase subunit J (NADH dehydrogenase I subunit J) (NDH-1 subunit J); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (213 aa) | ||||
nuoI | NADH-quinone oxidoreductase subunit I (NADH dehydrogenase I subunit I) (NDH-1 subunit I); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (162 aa) | ||||
nuoH | NADH-quinone oxidoreductase subunit H (NADH dehydrogenase I subunit H) (NDH-1 subunit H); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (357 aa) | ||||
nuoG | NADH-quinone oxidoreductase subunit G (NADH dehydrogenase I subunit G) (NDH-1 subunit G); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (777 aa) | ||||
nuoF | NADH-quinone oxidoreductase subunit F (NADH dehydrogenase I subunit F) (NDH-1 subunit F); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (431 aa) | ||||
nuoE | NADH-quinone oxidoreductase subunit E (NADH dehydrogenase I subunit E) (NDH-1 subunit E); Function of strongly homologous gene; enzyme. (159 aa) | ||||
nuoD | NADH-ubiquinone oxidoreductase D subunit (NADH dehydrogenase subunit D); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (417 aa) | ||||
nuoC | NADH-quinone oxidoreductase chain C (NADH dehydrogenase I, chain C) (NDH-1, chain C); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (198 aa) | ||||
nuoB | NADH-quinone oxidoreductase subunit B (NADH dehydrogenase I subunit B) (NDH-1 subunit B); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (158 aa) | ||||
nuoA | NADH-quinone oxidoreductase chain A (NADH dehydrogenase I, chain A) (NDH-1, chain A); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (119 aa) | ||||
acpP | Acyl carrier protein (ACP); Carrier of the growing fatty acid chain in fatty acid biosynthesis; Belongs to the acyl carrier protein (ACP) family. (80 aa) | ||||
fdxA3 | Ferredoxin 1; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (116 aa) | ||||
HEAR2640 | Deoxynucleoside kinase; Function of strongly homologous gene; enzyme. (213 aa) | ||||
fdx2 | Ferredoxin; Function of homologous gene experimentally demonstrated in an other organism; carrier. (87 aa) | ||||
HEAR2902 | Putative peptidase M16; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (436 aa) | ||||
HEAR2903 | Putative peptidase M16; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (427 aa) | ||||
HEAR2915 | Cytochrome c oxidase polypeptide III; Function of strongly homologous gene; carrier. (288 aa) | ||||
ctaD | Cytochrome c oxidase subunit 1 (Cytochrome c oxidase polypeptide I) (Cytochrome aa3 subunit 1); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (533 aa) | ||||
ctaC | Cytochrome c oxidase, subunit II (Cytochrome aa3 subunit 2); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (386 aa) | ||||
petC | Cytochrome c1 precursor; Function of strongly homologous gene; carrier. (254 aa) | ||||
petB | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (467 aa) | ||||
petA | Ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske iron-sulfur protein) (RISP); Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (202 aa) |