STRINGSTRING
HEAR0033 HEAR0033 HEAR0086 HEAR0086 rplM rplM rpsI rpsI yajC yajC secD secD secF secF rpsU rpsU gluQ gluQ rpsP rpsP rimM rimM trmD trmD rplS rplS rpmE2 rpmE2 rho rho prfC prfC ppa ppa HEAR1088 HEAR1088 map map rpsB rpsB tsf tsf smpB1 smpB1 smpB2 smpB2 def3 def3 tig tig rplT rplT rpmI rpmI infC infC secG secG pnp pnp rpsO rpsO rpmF rpmF HEAR2080 HEAR2080 rpoZ rpoZ rplI rplI rpsR rpsR priB priB rpsF rpsF prfB prfB lysS lysS truB truB rbfA rbfA infB infB nusA nusA rimP rimP rpsT rpsT rpmB rpmB rpmG rpmG ffh ffh rpmA rpmA rplU rplU secA secA rplY rplY ftsY ftsY secB secB rpoX rpoX rplQ rplQ rpoA rpoA rpsD rpsD rpsK rpsK rpsM rpsM infA infA secY secY rplO rplO rpmD rpmD rpsE rpsE rplR rplR rplF rplF rpsH rpsH rpsN rpsN rplE rplE rplX rplX rplN rplN rpsQ rpsQ rpmC rpmC rplP rplP rpsC rpsC rplV rplV rpsS rpsS rplB rplB rplW rplW rplD rplD rplC rplC rpsJ rpsJ tufB1 tufB1 tufA tufA rpsG rpsG rpsL rpsL rpoC rpoC rpoB rpoB rplL rplL rplJ rplJ rplA rplA rplK rplK nusG nusG secE secE tufB2 tufB2 atpC atpC atpD atpD atpG atpG atpA atpA atpH atpH atpF atpF atpE atpE atpB atpB HEAR3412 HEAR3412 oxaA oxaA HEAR3470 HEAR3470 rnpA rnpA rpmH rpmH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
HEAR0033Putative peptide chain release factor; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative factor. (136 aa)
HEAR0086Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (272 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
rpsI30S ribosomal protein S9; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the universal ribosomal protein uS9 family. (130 aa)
yajCPutative Preprotein translocase subunit YajC; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions. (108 aa)
secDPutative protein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (619 aa)
secFProtein-export membrane protein SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (315 aa)
rpsU30S ribosomal subunit protein S21; Function of homologous gene experimentally demonstrated in an other organism; factor; Belongs to the bacterial ribosomal protein bS21 family. (70 aa)
gluQGlutamyl-Q tRNA(Asp) synthetase (Glu-Q-RSs); Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon; Belongs to the class-I aminoacyl-tRNA synthetase family. GluQ subfamily. (319 aa)
rpsP30S ribosomal subunit protein S16; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bS16 family. (83 aa)
rimM16S rRNA processing protein; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (177 aa)
trmDtRNA (guanine-N(1)-)-methyltransferase) (M1G-methyltransferase) (tRNA [GM37] methyltransferase); Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (248 aa)
rplS50S ribosomal subunit protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (128 aa)
rpmE250S ribosomal protein L31 type B; Function of homologous gene experimentally demonstrated in an other organism; structure. (88 aa)
rhoTranscription termination factor (ATP-dependent helicase rho); Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (421 aa)
prfCPeptide chain release factor 3 (RF-3); Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (564 aa)
ppaInorganic pyrophosphatase (Pyrophosphate phospho-hydrolase) (PPase); Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (179 aa)
HEAR1088Putative ABC transporter, ATP-binding family protein; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative transporter. (533 aa)
mapMethionine aminopeptidase (MAP) (Peptidase M); Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (277 aa)
rpsB30S ribosomal subunit protein S2; Function of homologous gene experimentally demonstrated in an other organism; factor; Belongs to the universal ribosomal protein uS2 family. (248 aa)
tsfElongation factor Ts (EF-Ts); Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (293 aa)
smpB1SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (149 aa)
smpB2SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (149 aa)
def3Peptide deformylase (PDF) (Polypeptide deformylase); Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (177 aa)
tigTrigger factor (TF); Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (448 aa)
rplT50S ribosomal subunit protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (119 aa)
rpmI50S ribosomal protein L35; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL35 family. (65 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (156 aa)
secGPreprotein translocase SecG subunit; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (132 aa)
pnpPolyribonucleotide nucleotidyltransferase (Polynucleotide phosphorylase) (PNPase); Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (710 aa)
rpsO30S ribosomal subunit protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa)
rpmF50S ribosomal subunit protein L32; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL32 family. (60 aa)
HEAR2080Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (165 aa)
rpoZDNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (67 aa)
rplI50S ribosomal subunit protein L9; Binds to the 23S rRNA. (150 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (94 aa)
priBPrimosomal replication protein N; Binds single-stranded DNA at the primosome assembly site (PAS); Belongs to the PriB family. (97 aa)
rpsF30S ribosomal subunit protein S6; Binds together with S18 to 16S ribosomal RNA. (122 aa)
prfBPeptide chain release factor 2 (RF-2); Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (325 aa)
lysSLysyl-tRNA synthetase (Lysine--tRNA ligase) (LysRS); Function of homologous gene experimentally demonstrated in an other organism; enzyme; Belongs to the class-II aminoacyl-tRNA synthetase family. (511 aa)
truBtRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (314 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (128 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (941 aa)
nusATranscription elongation protein nusA (N utilization substance protein A) (L factor); Participates in both transcription termination and antitermination. (519 aa)
rimPConserved hypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (172 aa)
rpsT30S ribosomal subunit protein S20; Binds directly to 16S ribosomal RNA. (87 aa)
rpmB50S ribosomal subunit protein L28; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL28 family. (78 aa)
rpmG50S ribosomal subunit protein L33; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL33 family. (55 aa)
ffhSignal recognition particle protein (Fifty-four homolog); Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into th [...] (455 aa)
rpmA50S ribosomal subunit protein L27; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL27 family. (85 aa)
rplU50S ribosomal subunit protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa)
secAPreprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. Belongs to the SecA family. (921 aa)
rplY50S ribosomal protein L25 (General stress protein CTC); This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (210 aa)
ftsYCell division protein FtsY homolog; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (408 aa)
secBProtein export chaperone SecB; One of the proteins required for the normal export of preproteins out of the cell cytoplasm. It is a molecular chaperone that binds to a subset of precursor proteins, maintaining them in a translocation-competent state. It also specifically binds to its receptor SecA. (164 aa)
rpoXSigma(54) modulation protein; Function of homologous gene experimentally demonstrated in an other organism; factor. (117 aa)
rplQ50S ribosomal protein L17; Function of homologous gene experimentally demonstrated in an other organism; structure. (131 aa)
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (325 aa)
rpsD30S ribosomal subunit protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (207 aa)
rpsK30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (134 aa)
rpsM30S ribosomal subunit protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (121 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
secYPreprotein translocase SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (443 aa)
rplO50S ribosomal subunit protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (143 aa)
rpmD50S ribosomal subunit protein L30; Function of homologous gene experimentally demonstrated in an other organism; structure. (59 aa)
rpsE30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (172 aa)
rplR50S ribosomal subunit protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (120 aa)
rplF50S ribosomal subunit protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa)
rpsN30S ribosomal subunit protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa)
rplE50S ribosomal subunit protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rplX50S ribosomal subunit protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (104 aa)
rplN50S ribosomal subunit protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rpsQ30S ribosomal subunit protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (90 aa)
rpmC50S ribosomal protein L29; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the universal ribosomal protein uL29 family. (63 aa)
rplP50S ribosomal subunit protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (139 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (283 aa)
rplV50S ribosomal subunit protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (109 aa)
rpsS30S ribosomal subunit protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (91 aa)
rplB50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (275 aa)
rplW50S ribosomal subunit protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (105 aa)
rplD50S ribosomal subunit protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (206 aa)
rplC50S ribosomal subunit protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (224 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (110 aa)
tufB1Elongation factor Tu-B (EF-Tu-B); This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa)
tufAElongation factor G (EF-G); Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (702 aa)
rpsG30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
rpsL30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. (127 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1414 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1368 aa)
rplL50S ribosomal subunit protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (124 aa)
rplJ50S ribosomal subunit protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (182 aa)
rplA50S ribosomal subunit protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (231 aa)
rplK50S ribosomal subunit protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (143 aa)
nusGTranscription antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (192 aa)
secEPreprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation; Belongs to the SecE/SEC61-gamma family. (127 aa)
tufB2Elongation factor Tu-B (EF-Tu-B); Function of homologous gene experimentally demonstrated in an other organism; factor. (396 aa)
atpCATP synthase epsilon chain (ATP synthase F1 sector epsilon subunit); Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa)
atpDATP synthase subunit beta (ATPase subunit beta) (ATP synthase F1 sector subunit beta); Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (466 aa)
atpGATP synthase gamma chain (ATP synthase F1 sector gamma subunit); Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (289 aa)
atpAATP synthase subunit alpha (ATPase subunit alpha) (ATP synthase F1 sector subunit alpha); Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (511 aa)
atpHATP synthase delta chain AtpH; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (177 aa)
atpFATP synthase F0, B chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa)
atpEATP synthase F0, C chain (Lipid-binding protein); F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa)
atpBATP synthase F0, A chain; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (281 aa)
HEAR3412Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (112 aa)
oxaAInner membrane protein OxaA; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (569 aa)
HEAR3470Conserved hypothetical protein; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family. (88 aa)
rnpAPutative ribonuclease P rnpA; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. (136 aa)
rpmH50S ribosomal subunit protein L34; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL34 family. (44 aa)
Your Current Organism:
Herminiimonas arsenicoxydans
NCBI taxonomy Id: 204773
Other names: CCM 7303, DSM 17148, H. arsenicoxydans, Herminiimonas arsenicoxydans Muller et al. 2006, LMG 22961, LMG:22961, strain ULPAs1
Server load: low (26%) [HD]