node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ANY21597.1 | ANY24015.1 | BCM27_01055 | BCM27_15525 | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.957 |
ANY21597.1 | folD | BCM27_01055 | BCM27_09095 | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.978 |
ANY21597.1 | glyA | BCM27_01055 | BCM27_08670 | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.901 |
ANY21597.1 | glyA-2 | BCM27_01055 | BCM27_09980 | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.907 |
ANY24015.1 | ANY21597.1 | BCM27_15525 | BCM27_01055 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.957 |
ANY24015.1 | folD | BCM27_15525 | BCM27_09095 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.944 |
ANY24015.1 | glyA | BCM27_15525 | BCM27_08670 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.957 |
ANY24015.1 | glyA-2 | BCM27_15525 | BCM27_09980 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.957 |
ANY25909.1 | folD | BCM27_07585 | BCM27_09095 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.925 |
folD | ANY21597.1 | BCM27_09095 | BCM27_01055 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.978 |
folD | ANY24015.1 | BCM27_09095 | BCM27_15525 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.944 |
folD | ANY25909.1 | BCM27_09095 | BCM27_07585 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | 0.925 |
folD | glyA | BCM27_09095 | BCM27_08670 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.978 |
folD | glyA-2 | BCM27_09095 | BCM27_09980 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.978 |
glyA | ANY21597.1 | BCM27_08670 | BCM27_01055 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.901 |
glyA | ANY24015.1 | BCM27_08670 | BCM27_15525 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.957 |
glyA | folD | BCM27_08670 | BCM27_09095 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.978 |
glyA | glyA-2 | BCM27_08670 | BCM27_09980 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.906 |
glyA-2 | ANY21597.1 | BCM27_09980 | BCM27_01055 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Serine hydroxymethyltransferase; Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.907 |
glyA-2 | ANY24015.1 | BCM27_09980 | BCM27_15525 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.957 |