STRINGSTRING
exoT exoT proC proC pqsA pqsA pqsB pqsB pqsC pqsC pqsD pqsD phnB phnB mvfR mvfR lasR lasR rsaL rsaL lasI lasI pscD pscD lasA lasA phzC2 phzC2 phzE2 phzE2 pqsH pqsH rhlI rhlI rhlR rhlR rhlA rhlA lasB lasB PA3853 PA3853 PA4142 PA4142 mexH mexH mexI mexI opmD opmD phzA1 phzA1 phzC1 phzC1 phzE1 phzE1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
exoTProduct name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (457 aa)
proCPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (273 aa)
pqsAProbable coenzyme A ligase; Catalyzes the formation of anthraniloyl-CoA, which is the priming step for entry into the Pseudomonas quinolone signal (PQS) biosynthetic pathway. Also active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. (517 aa)
pqsBPqsB; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. The PqsC/PqsB complex catalyzes the condensation of 2-aminobenzoylacetate (2-ABA) and octanoyl-CoA to form HHQ. PqsB, together with PqsC, catalyzes the coupling of 2-ABA with the octanoate group, leading to decarboxylation and dehydration, and resulting in closure of the quinoline ring. PqsB is probably required for the proper folding of PqsC ra [...] (283 aa)
pqsCPqsC; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. The PqsC/PqsB complex catalyzes the condensation of 2-aminobenzoylacetate (2-ABA) and octanoyl-CoA to form HHQ. First, PqsC acquires an octanoyl group from octanoyl-CoA and forms an octanoyl-PqsC intermediate. Then, together with PqsB, it catalyzes the coupling of 2-ABA with the octanoate group, leading to decarboxylation and dehydration, and re [...] (348 aa)
pqsD3-oxoacyl-[acyl-carrier-protein] synthase III; Required for the biosynthesis of a number of signaling molecules, such as the quinolone signal 2-heptyl-3-hydroxy-4(1H)- quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and 2,4- dihydroxyquinoline (DHQ). These molecules are required for normal biofilm formation. Catalyzes the transfer of the anthraniloyl moiety from anthraniloyl-CoA to malonyl-CoA to form 2-aminobenzoylacetyl-CoA. The first step of the reaction is the formation of a covalent anthraniloyl-PqsD intermediate. Next, the short-lived intermediate 3-(2-aminophenyl)- 3-oxopropa [...] (337 aa)
phnBAnthranilate synthase component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...] (200 aa)
mvfRTranscriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. (332 aa)
lasRTranscriptional regulator LasR; Transcriptional activator of elastase structural gene (LasB). Binds to the PAI autoinducer; Belongs to the autoinducer-regulated transcriptional regulatory protein family. (239 aa)
rsaLRegulatory protein RsaL; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (80 aa)
lasIAutoinducer synthesis protein LasI; Required for the synthesis of PAI consisting of 3-oxo-N- (tetrahydro-2-oxo-3-furanyl)-dodecanamide also known as N-(3- oxododecanoyl)homoserine lactone, an autoinducer molecule which binds to LasR and thus acts in elastase biosynthesis regulation. (201 aa)
pscDType III export protein PscD; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (432 aa)
lasALasA protease precursor; Involved in proteolysis and elastolysis (degradation of the host protein elastin). Has staphylolytic activity (degrades pentaglycine cross-links in cell wall peptidogylcan), preferring Gly- Gly-|-X substrates where X is Ala or Gly. Enhances the elastolytic but not proteolytic activity of elastase (lasB) and elastolytic activity of other proteases. Degradation of host elastin is likely to contribute to the pathogenicity of P.aeruginosa. While either His-317 or His-356 can abstract a proton in the hydrolysis reaction, the same residue performs both functions in a [...] (418 aa)
phzC2Phenazine biosynthesis protein PhzC; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (405 aa)
phzE2Phenazine biosynthesis protein PhzE; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (627 aa)
pqsHProbable FAD-dependent monooxygenase; Involved in the terminal step of the biosynthesis of quinolone which in addition to serve as a potent signal for quorum sensing, chelates iron and promotes the formation of membrane vesicles (MVs). Catalyzes the hydroxylation of 2-heptyl-4-quinolone (C7-HHQ) to yield 2-heptyl-3-hydroxy-4-quinolone (PQS). Belongs to the 3-hydroxybenzoate 6-hydroxylase family. (382 aa)
rhlIAutoinducer synthesis protein RhlI; Required for the synthesis of BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone) autoinducer molecules which bind to RhlR and thus acts in elastase biosynthesis regulation. (201 aa)
rhlRTranscriptional regulator RhlR; Necessary for transcriptional activation of the rhlAB genes encoding the rhamnosyltransferase. It also functions as a transcriptional activator of elastase structural gene (lasB). Binds to autoinducer molecules BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone). (241 aa)
rhlARhamnosyltransferase chain A; Required for rhamnolipid surfactant production. Supplies the acyl moieties for rhamnolipid biosynthesis by competing with the enzymes of the type II fatty acid synthase (FASII) cycle for the beta-hydroxyacyl-acyl carrier protein (ACP) pathway intermediates. Catalyzes the formation of one molecule of beta-hydroxydecanoyl-beta-hydroxydecanoate from two molecules of beta- hydroxydecanoyl-ACP. Is the only enzyme required to generate the lipid component of rhamnolipid. In vitro results establish that RhlA is highly selective for 10-carbon acyl-ACP intermediates [...] (295 aa)
lasBElastase LasB; Cleaves host elastin, collagen, IgG, and several complement components as well as endogenous pro-aminopeptidase. Autocatalyses processing of its pro-peptide. Processes the pro-peptide of pro-chitin-binding protein (cbpD). Involved in the pathogenesis of P.aeruginosa infections. (498 aa)
PA3853Probable transferase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). (229 aa)
PA4142Probable secretion protein; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). (418 aa)
mexHProbable Resistance-Nodulation-Cell Division (RND) efflux membrane fusion protein precursor; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the membrane fusion protein (MFP) (TC 8.A.1) family. (370 aa)
mexIProbable Resistance-Nodulation-Cell Division (RND) efflux transporter; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the resistance-nodulation-cell division (RND) (TC 2.A.6) family. (1029 aa)
opmDProbable outer membrane protein precursor; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (487 aa)
phzA1Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzA1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth. (162 aa)
phzC1Phenazine biosynthesis protein PhzC; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (405 aa)
phzE1Phenazine biosynthesis protein PhzE; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (627 aa)
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: low (14%) [HD]