Your Input: | |||||
exoT | Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (457 aa) | ||||
proC | Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (273 aa) | ||||
pqsA | Probable coenzyme A ligase; Catalyzes the formation of anthraniloyl-CoA, which is the priming step for entry into the Pseudomonas quinolone signal (PQS) biosynthetic pathway. Also active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. (517 aa) | ||||
pqsB | PqsB; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. The PqsC/PqsB complex catalyzes the condensation of 2-aminobenzoylacetate (2-ABA) and octanoyl-CoA to form HHQ. PqsB, together with PqsC, catalyzes the coupling of 2-ABA with the octanoate group, leading to decarboxylation and dehydration, and resulting in closure of the quinoline ring. PqsB is probably required for the proper folding of PqsC ra [...] (283 aa) | ||||
pqsC | PqsC; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. The PqsC/PqsB complex catalyzes the condensation of 2-aminobenzoylacetate (2-ABA) and octanoyl-CoA to form HHQ. First, PqsC acquires an octanoyl group from octanoyl-CoA and forms an octanoyl-PqsC intermediate. Then, together with PqsB, it catalyzes the coupling of 2-ABA with the octanoate group, leading to decarboxylation and dehydration, and re [...] (348 aa) | ||||
pqsD | 3-oxoacyl-[acyl-carrier-protein] synthase III; Required for the biosynthesis of a number of signaling molecules, such as the quinolone signal 2-heptyl-3-hydroxy-4(1H)- quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and 2,4- dihydroxyquinoline (DHQ). These molecules are required for normal biofilm formation. Catalyzes the transfer of the anthraniloyl moiety from anthraniloyl-CoA to malonyl-CoA to form 2-aminobenzoylacetyl-CoA. The first step of the reaction is the formation of a covalent anthraniloyl-PqsD intermediate. Next, the short-lived intermediate 3-(2-aminophenyl)- 3-oxopropa [...] (337 aa) | ||||
phnB | Anthranilate synthase component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...] (200 aa) | ||||
mvfR | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. (332 aa) | ||||
lasR | Transcriptional regulator LasR; Transcriptional activator of elastase structural gene (LasB). Binds to the PAI autoinducer; Belongs to the autoinducer-regulated transcriptional regulatory protein family. (239 aa) | ||||
rsaL | Regulatory protein RsaL; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (80 aa) | ||||
lasI | Autoinducer synthesis protein LasI; Required for the synthesis of PAI consisting of 3-oxo-N- (tetrahydro-2-oxo-3-furanyl)-dodecanamide also known as N-(3- oxododecanoyl)homoserine lactone, an autoinducer molecule which binds to LasR and thus acts in elastase biosynthesis regulation. (201 aa) | ||||
pscD | Type III export protein PscD; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (432 aa) | ||||
lasA | LasA protease precursor; Involved in proteolysis and elastolysis (degradation of the host protein elastin). Has staphylolytic activity (degrades pentaglycine cross-links in cell wall peptidogylcan), preferring Gly- Gly-|-X substrates where X is Ala or Gly. Enhances the elastolytic but not proteolytic activity of elastase (lasB) and elastolytic activity of other proteases. Degradation of host elastin is likely to contribute to the pathogenicity of P.aeruginosa. While either His-317 or His-356 can abstract a proton in the hydrolysis reaction, the same residue performs both functions in a [...] (418 aa) | ||||
phzC2 | Phenazine biosynthesis protein PhzC; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (405 aa) | ||||
phzE2 | Phenazine biosynthesis protein PhzE; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (627 aa) | ||||
pqsH | Probable FAD-dependent monooxygenase; Involved in the terminal step of the biosynthesis of quinolone which in addition to serve as a potent signal for quorum sensing, chelates iron and promotes the formation of membrane vesicles (MVs). Catalyzes the hydroxylation of 2-heptyl-4-quinolone (C7-HHQ) to yield 2-heptyl-3-hydroxy-4-quinolone (PQS). Belongs to the 3-hydroxybenzoate 6-hydroxylase family. (382 aa) | ||||
rhlI | Autoinducer synthesis protein RhlI; Required for the synthesis of BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone) autoinducer molecules which bind to RhlR and thus acts in elastase biosynthesis regulation. (201 aa) | ||||
rhlR | Transcriptional regulator RhlR; Necessary for transcriptional activation of the rhlAB genes encoding the rhamnosyltransferase. It also functions as a transcriptional activator of elastase structural gene (lasB). Binds to autoinducer molecules BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone). (241 aa) | ||||
rhlA | Rhamnosyltransferase chain A; Required for rhamnolipid surfactant production. Supplies the acyl moieties for rhamnolipid biosynthesis by competing with the enzymes of the type II fatty acid synthase (FASII) cycle for the beta-hydroxyacyl-acyl carrier protein (ACP) pathway intermediates. Catalyzes the formation of one molecule of beta-hydroxydecanoyl-beta-hydroxydecanoate from two molecules of beta- hydroxydecanoyl-ACP. Is the only enzyme required to generate the lipid component of rhamnolipid. In vitro results establish that RhlA is highly selective for 10-carbon acyl-ACP intermediates [...] (295 aa) | ||||
lasB | Elastase LasB; Cleaves host elastin, collagen, IgG, and several complement components as well as endogenous pro-aminopeptidase. Autocatalyses processing of its pro-peptide. Processes the pro-peptide of pro-chitin-binding protein (cbpD). Involved in the pathogenesis of P.aeruginosa infections. (498 aa) | ||||
PA3853 | Probable transferase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). (229 aa) | ||||
PA4142 | Probable secretion protein; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). (418 aa) | ||||
mexH | Probable Resistance-Nodulation-Cell Division (RND) efflux membrane fusion protein precursor; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the membrane fusion protein (MFP) (TC 8.A.1) family. (370 aa) | ||||
mexI | Probable Resistance-Nodulation-Cell Division (RND) efflux transporter; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the resistance-nodulation-cell division (RND) (TC 2.A.6) family. (1029 aa) | ||||
opmD | Probable outer membrane protein precursor; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (487 aa) | ||||
phzA1 | Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzA1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth. (162 aa) | ||||
phzC1 | Phenazine biosynthesis protein PhzC; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (405 aa) | ||||
phzE1 | Phenazine biosynthesis protein PhzE; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (627 aa) |