STRINGSTRING
lasI lasI lasR lasR toxA toxA pqsE pqsE pqsD pqsD pqsA pqsA PA3853 PA3853 rhl rhl mucA mucA lasB lasB rhlR rhlR rhlI rhlI fabV fabV pqsH pqsH PA2411 PA2411 lasA lasA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
lasIAutoinducer synthesis protein LasI; Required for the synthesis of PAI consisting of 3-oxo-N- (tetrahydro-2-oxo-3-furanyl)-dodecanamide also known as N-(3- oxododecanoyl)homoserine lactone, an autoinducer molecule which binds to LasR and thus acts in elastase biosynthesis regulation. (201 aa)
lasRTranscriptional regulator LasR; Transcriptional activator of elastase structural gene (LasB). Binds to the PAI autoinducer; Belongs to the autoinducer-regulated transcriptional regulatory protein family. (239 aa)
toxAExotoxin A precursor; An NAD-dependent ADP-ribosyltransferase (ADPRT). Catalyzes the transfer of the ADP ribosyl moiety of oxidized NAD (NAD(+)) onto eukaryotic elongation factor 2 (eEF-2) thus arresting protein synthesis. Has an LD(50) of 65 ng/ml against the human lung epithelial cell line C38. (638 aa)
pqsEQuinolone signal response protein; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. Catalyzes the hydrolysis of the intermediate 2-aminobenzoylacetyl-CoA (2-ABA-CoA) to form 2- aminobenzoylacetate (2-ABA), the precursor of HHQ. In vitro, can also hydrolyze other substrates such as S-ethyl-acetothioacetate and acetoacetyl-CoA, but is inactive against anthraniloyl-CoA, malonyl-CoA and octanoyl-CoA. Be [...] (301 aa)
pqsD3-oxoacyl-[acyl-carrier-protein] synthase III; Required for the biosynthesis of a number of signaling molecules, such as the quinolone signal 2-heptyl-3-hydroxy-4(1H)- quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and 2,4- dihydroxyquinoline (DHQ). These molecules are required for normal biofilm formation. Catalyzes the transfer of the anthraniloyl moiety from anthraniloyl-CoA to malonyl-CoA to form 2-aminobenzoylacetyl-CoA. The first step of the reaction is the formation of a covalent anthraniloyl-PqsD intermediate. Next, the short-lived intermediate 3-(2-aminophenyl)- 3-oxopropa [...] (337 aa)
pqsAProbable coenzyme A ligase; Catalyzes the formation of anthraniloyl-CoA, which is the priming step for entry into the Pseudomonas quinolone signal (PQS) biosynthetic pathway. Also active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. (517 aa)
PA3853Probable transferase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). (229 aa)
rhlATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (397 aa)
mucAAnti-sigma factor MucA; Negative regulator of the sigma factor AlgU. Plays a role in the differentiation of P.aeruginosa into the alginate-producing form. Inactivation of mucA causes a switch from the non-mucoid to mucoid state resulting in constitutive expression of alginate biosynthetic genes. (194 aa)
lasBElastase LasB; Cleaves host elastin, collagen, IgG, and several complement components as well as endogenous pro-aminopeptidase. Autocatalyses processing of its pro-peptide. Processes the pro-peptide of pro-chitin-binding protein (cbpD). Involved in the pathogenesis of P.aeruginosa infections. (498 aa)
rhlRTranscriptional regulator RhlR; Necessary for transcriptional activation of the rhlAB genes encoding the rhamnosyltransferase. It also functions as a transcriptional activator of elastase structural gene (lasB). Binds to autoinducer molecules BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone). (241 aa)
rhlIAutoinducer synthesis protein RhlI; Required for the synthesis of BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone) autoinducer molecules which bind to RhlR and thus acts in elastase biosynthesis regulation. (201 aa)
fabVHypothetical protein; Involved in the final reduction of the elongation cycle of fatty acid synthesis (FAS II). Catalyzes the reduction of a carbon- carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP). It can use both crotonyl-CoA and trans-2- decenoyl-ACP. It is able to convert trans-2-enoyl-ACP of different length (C2 to C16) to the corresponding acyl-ACP. Belongs to the TER reductase family. (398 aa)
pqsHProbable FAD-dependent monooxygenase; Involved in the terminal step of the biosynthesis of quinolone which in addition to serve as a potent signal for quorum sensing, chelates iron and promotes the formation of membrane vesicles (MVs). Catalyzes the hydroxylation of 2-heptyl-4-quinolone (C7-HHQ) to yield 2-heptyl-3-hydroxy-4-quinolone (PQS). Belongs to the 3-hydroxybenzoate 6-hydroxylase family. (382 aa)
PA2411Probable thioesterase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). (254 aa)
lasALasA protease precursor; Involved in proteolysis and elastolysis (degradation of the host protein elastin). Has staphylolytic activity (degrades pentaglycine cross-links in cell wall peptidogylcan), preferring Gly- Gly-|-X substrates where X is Ala or Gly. Enhances the elastolytic but not proteolytic activity of elastase (lasB) and elastolytic activity of other proteases. Degradation of host elastin is likely to contribute to the pathogenicity of P.aeruginosa. While either His-317 or His-356 can abstract a proton in the hydrolysis reaction, the same residue performs both functions in a [...] (418 aa)
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: low (32%) [HD]