Your Input: | |||||
pqsA | Probable coenzyme A ligase; Catalyzes the formation of anthraniloyl-CoA, which is the priming step for entry into the Pseudomonas quinolone signal (PQS) biosynthetic pathway. Also active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. (517 aa) | ||||
trpB | Tryptophan synthase beta chain; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (402 aa) | ||||
relA | GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (747 aa) | ||||
pqsD | 3-oxoacyl-[acyl-carrier-protein] synthase III; Required for the biosynthesis of a number of signaling molecules, such as the quinolone signal 2-heptyl-3-hydroxy-4(1H)- quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and 2,4- dihydroxyquinoline (DHQ). These molecules are required for normal biofilm formation. Catalyzes the transfer of the anthraniloyl moiety from anthraniloyl-CoA to malonyl-CoA to form 2-aminobenzoylacetyl-CoA. The first step of the reaction is the formation of a covalent anthraniloyl-PqsD intermediate. Next, the short-lived intermediate 3-(2-aminophenyl)- 3-oxopropa [...] (337 aa) | ||||
pqsE | Quinolone signal response protein; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. Catalyzes the hydrolysis of the intermediate 2-aminobenzoylacetyl-CoA (2-ABA-CoA) to form 2- aminobenzoylacetate (2-ABA), the precursor of HHQ. In vitro, can also hydrolyze other substrates such as S-ethyl-acetothioacetate and acetoacetyl-CoA, but is inactive against anthraniloyl-CoA, malonyl-CoA and octanoyl-CoA. Be [...] (301 aa) | ||||
gbuA | Guanidinobutyrase; Catalyzes specifically the hydrolysis of 4-guanidinobutanoate to 4-aminobutanoate and urea. Has no activity against arginine, agmatine, 3-guanidinopropionate and guanidinoacetate. (319 aa) | ||||
lasR | Transcriptional regulator LasR; Transcriptional activator of elastase structural gene (LasB). Binds to the PAI autoinducer; Belongs to the autoinducer-regulated transcriptional regulatory protein family. (239 aa) | ||||
lasI | Autoinducer synthesis protein LasI; Required for the synthesis of PAI consisting of 3-oxo-N- (tetrahydro-2-oxo-3-furanyl)-dodecanamide also known as N-(3- oxododecanoyl)homoserine lactone, an autoinducer molecule which binds to LasR and thus acts in elastase biosynthesis regulation. (201 aa) | ||||
phzA2 | Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule having important roles in virulence, competition and biological control. PhzA2 (operon phzA2B2C2E2F2G2) has a role in the biosynthesis of the phenazine during both planktonic growth and biofilm development, and in host infection during biofilm development. (162 aa) | ||||
ambB | AmbB; Product name confidence: Class 1: Function experimentally demonstrated in P. aeruginosa; Belongs to the ATP-dependent AMP-binding enzyme family. (1249 aa) | ||||
pqsH | Probable FAD-dependent monooxygenase; Involved in the terminal step of the biosynthesis of quinolone which in addition to serve as a potent signal for quorum sensing, chelates iron and promotes the formation of membrane vesicles (MVs). Catalyzes the hydroxylation of 2-heptyl-4-quinolone (C7-HHQ) to yield 2-heptyl-3-hydroxy-4-quinolone (PQS). Belongs to the 3-hydroxybenzoate 6-hydroxylase family. (382 aa) | ||||
acpP | Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis; Belongs to the acyl carrier protein (ACP) family. (78 aa) | ||||
pheA | Chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate. (365 aa) | ||||
rhlI | Autoinducer synthesis protein RhlI; Required for the synthesis of BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone) autoinducer molecules which bind to RhlR and thus acts in elastase biosynthesis regulation. (201 aa) | ||||
rhlR | Transcriptional regulator RhlR; Necessary for transcriptional activation of the rhlAB genes encoding the rhamnosyltransferase. It also functions as a transcriptional activator of elastase structural gene (lasB). Binds to autoinducer molecules BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone). (241 aa) | ||||
rhl | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (397 aa) | ||||
phzA1 | Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzA1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth. (162 aa) | ||||
pchA | Salicylate biosynthesis isochorismate synthase; Involved in the conversion of chorismate to salicylate. (476 aa) | ||||
sodB | Superoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (193 aa) | ||||
hisD | Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (440 aa) | ||||
rpoN | RNA polymerase sigma-54 factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (497 aa) | ||||
sodM | Superoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (203 aa) | ||||
glnE | Glutamate-ammonia-ligase adenylyltransferase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signal transd [...] (982 aa) | ||||
ntrB | Two-component sensor NtrB; Product name confidence: Class 2 (High similarity to functionally studied protein). (358 aa) | ||||
argH | Argininosuccinate lyase; Product name confidence: Class 2 (High similarity to functionally studied protein). (464 aa) | ||||
lysA | Diaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (415 aa) | ||||
phoB | Two-component response regulator PhoB; This protein is a positive regulator for the phosphate regulon. Transcription of this operon is positively regulated by PhoB and PhoR when phosphate is limited. (229 aa) | ||||
phoR | Two-component sensor PhoR; Member of the two-component regulatory system PhoR/PhoB involved in the phosphate regulon genes expression. PhoR may function as a membrane-associated protein kinase that phosphorylates PhoB in response to environmental signals. (443 aa) |