STRINGSTRING
rsaL rsaL phzH phzH dnr dnr pqsD pqsD pqsE pqsE mvfR mvfR lasR lasR lasI lasI anr anr qscR qscR phzA2 phzA2 phzG2 phzG2 PA1906 PA1906 PA2411 PA2411 pqsH pqsH rhlI rhlI rhlR rhlR rhlA rhlA lasB lasB rhl rhl phzM phzM phzA1 phzA1 phzS phzS oxyR oxyR
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rsaLRegulatory protein RsaL; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (80 aa)
phzHPotential phenazine-modifying enzyme; Product name confidence: Class 2 (High similarity to functionally studied protein). (610 aa)
dnrTranscriptional regulator Dnr; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (227 aa)
pqsD3-oxoacyl-[acyl-carrier-protein] synthase III; Required for the biosynthesis of a number of signaling molecules, such as the quinolone signal 2-heptyl-3-hydroxy-4(1H)- quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and 2,4- dihydroxyquinoline (DHQ). These molecules are required for normal biofilm formation. Catalyzes the transfer of the anthraniloyl moiety from anthraniloyl-CoA to malonyl-CoA to form 2-aminobenzoylacetyl-CoA. The first step of the reaction is the formation of a covalent anthraniloyl-PqsD intermediate. Next, the short-lived intermediate 3-(2-aminophenyl)- 3-oxopropa [...] (337 aa)
pqsEQuinolone signal response protein; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. Catalyzes the hydrolysis of the intermediate 2-aminobenzoylacetyl-CoA (2-ABA-CoA) to form 2- aminobenzoylacetate (2-ABA), the precursor of HHQ. In vitro, can also hydrolyze other substrates such as S-ethyl-acetothioacetate and acetoacetyl-CoA, but is inactive against anthraniloyl-CoA, malonyl-CoA and octanoyl-CoA. Be [...] (301 aa)
mvfRTranscriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. (332 aa)
lasRTranscriptional regulator LasR; Transcriptional activator of elastase structural gene (LasB). Binds to the PAI autoinducer; Belongs to the autoinducer-regulated transcriptional regulatory protein family. (239 aa)
lasIAutoinducer synthesis protein LasI; Required for the synthesis of PAI consisting of 3-oxo-N- (tetrahydro-2-oxo-3-furanyl)-dodecanamide also known as N-(3- oxododecanoyl)homoserine lactone, an autoinducer molecule which binds to LasR and thus acts in elastase biosynthesis regulation. (201 aa)
anrTranscriptional regulator Anr; Transcriptional activator of anaerobic gene expression. (244 aa)
qscRQuorum-sensing control repressor; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa). (237 aa)
phzA2Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule having important roles in virulence, competition and biological control. PhzA2 (operon phzA2B2C2E2F2G2) has a role in the biosynthesis of the phenazine during both planktonic growth and biofilm development, and in host infection during biofilm development. (162 aa)
phzG2Probable pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). (215 aa)
PA1906Hypothetical protein; Product name confidence: Class 4 (Homologs of previously reported genes of unknown function, or no similarity to any previously reported sequences). (178 aa)
PA2411Probable thioesterase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). (254 aa)
pqsHProbable FAD-dependent monooxygenase; Involved in the terminal step of the biosynthesis of quinolone which in addition to serve as a potent signal for quorum sensing, chelates iron and promotes the formation of membrane vesicles (MVs). Catalyzes the hydroxylation of 2-heptyl-4-quinolone (C7-HHQ) to yield 2-heptyl-3-hydroxy-4-quinolone (PQS). Belongs to the 3-hydroxybenzoate 6-hydroxylase family. (382 aa)
rhlIAutoinducer synthesis protein RhlI; Required for the synthesis of BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone) autoinducer molecules which bind to RhlR and thus acts in elastase biosynthesis regulation. (201 aa)
rhlRTranscriptional regulator RhlR; Necessary for transcriptional activation of the rhlAB genes encoding the rhamnosyltransferase. It also functions as a transcriptional activator of elastase structural gene (lasB). Binds to autoinducer molecules BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone). (241 aa)
rhlARhamnosyltransferase chain A; Required for rhamnolipid surfactant production. Supplies the acyl moieties for rhamnolipid biosynthesis by competing with the enzymes of the type II fatty acid synthase (FASII) cycle for the beta-hydroxyacyl-acyl carrier protein (ACP) pathway intermediates. Catalyzes the formation of one molecule of beta-hydroxydecanoyl-beta-hydroxydecanoate from two molecules of beta- hydroxydecanoyl-ACP. Is the only enzyme required to generate the lipid component of rhamnolipid. In vitro results establish that RhlA is highly selective for 10-carbon acyl-ACP intermediates [...] (295 aa)
lasBElastase LasB; Cleaves host elastin, collagen, IgG, and several complement components as well as endogenous pro-aminopeptidase. Autocatalyses processing of its pro-peptide. Processes the pro-peptide of pro-chitin-binding protein (cbpD). Involved in the pathogenesis of P.aeruginosa infections. (498 aa)
rhlATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (397 aa)
phzMProbable phenazine-specific methyltransferase; Involved in the biosynthesis of pyocyanine, a blue-pigmented phenazine derivative, which plays a role in virulence. Converts phenazine-1-carboxylate (PCA) to 5-methylphenazine-1-carboxylate (5- methyl-PCA); Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-independent O-methyltransferase family. (334 aa)
phzA1Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzA1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth. (162 aa)
phzSFlavin-containing monooxygenase; Involved in the biosynthesis of pyocyanine, a blue-pigmented phenazine derivative, which plays a role in virulence. Catalyzes the oxidative decarboxylation of 5-methylphenazine-1-carboxylate (5-methyl- PCA) to pyocyanine. Can also act on phenazine-1-carboxylate (PCA), converting it into 1-hydroxyphenazine (1-HP). However, PCA is a poor substrate. (402 aa)
oxyROxyR; Product name confidence: Class 1: Function experimentally demonstrated in P. aeruginosa; Belongs to the LysR transcriptional regulatory family. (310 aa)
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: low (16%) [HD]