node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
PA0848 | ahpF | PA0848 | PA0140 | Probable alkyl hydroperoxide reductase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). | Alkyl hydroperoxide reductase subunit F; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein (By similarity); Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | 0.976 |
PA0848 | pvdH | PA0848 | PA2413 | Probable alkyl hydroperoxide reductase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). | L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase, PvdH; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. | 0.424 |
PA0848 | trxB2 | PA0848 | PA0849 | Probable alkyl hydroperoxide reductase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). | Thioredoxin reductase 2; Product name confidence: Class 2 (High similarity to functionally studied protein). | 0.988 |
ahpF | PA0848 | PA0140 | PA0848 | Alkyl hydroperoxide reductase subunit F; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein (By similarity); Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Probable alkyl hydroperoxide reductase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). | 0.976 |
ahpF | trxB2 | PA0140 | PA0849 | Alkyl hydroperoxide reductase subunit F; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein (By similarity); Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Thioredoxin reductase 2; Product name confidence: Class 2 (High similarity to functionally studied protein). | 0.905 |
mvfR | pqsA | PA1003 | PA0996 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | Probable coenzyme A ligase; Catalyzes the formation of anthraniloyl-CoA, which is the priming step for entry into the Pseudomonas quinolone signal (PQS) biosynthetic pathway. Also active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. | 0.922 |
mvfR | pqsB | PA1003 | PA0997 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | PqsB; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. The PqsC/PqsB complex catalyzes the condensation of 2-aminobenzoylacetate (2-ABA) and octanoyl-CoA to form HHQ. PqsB, together with PqsC, catalyzes the coupling of 2-ABA with the octanoate group, leading to decarboxylation and dehydration, and resulting in closure of the quinoline ring. PqsB is probably required for the proper folding of PqsC ra [...] | 0.791 |
mvfR | pqsC | PA1003 | PA0998 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | PqsC; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. The PqsC/PqsB complex catalyzes the condensation of 2-aminobenzoylacetate (2-ABA) and octanoyl-CoA to form HHQ. First, PqsC acquires an octanoyl group from octanoyl-CoA and forms an octanoyl-PqsC intermediate. Then, together with PqsB, it catalyzes the coupling of 2-ABA with the octanoate group, leading to decarboxylation and dehydration, and re [...] | 0.839 |
mvfR | pqsD | PA1003 | PA0999 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | 3-oxoacyl-[acyl-carrier-protein] synthase III; Required for the biosynthesis of a number of signaling molecules, such as the quinolone signal 2-heptyl-3-hydroxy-4(1H)- quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and 2,4- dihydroxyquinoline (DHQ). These molecules are required for normal biofilm formation. Catalyzes the transfer of the anthraniloyl moiety from anthraniloyl-CoA to malonyl-CoA to form 2-aminobenzoylacetyl-CoA. The first step of the reaction is the formation of a covalent anthraniloyl-PqsD intermediate. Next, the short-lived intermediate 3-(2-aminophenyl)- 3-oxopropa [...] | 0.895 |
mvfR | pqsH | PA1003 | PA2587 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | Probable FAD-dependent monooxygenase; Involved in the terminal step of the biosynthesis of quinolone which in addition to serve as a potent signal for quorum sensing, chelates iron and promotes the formation of membrane vesicles (MVs). Catalyzes the hydroxylation of 2-heptyl-4-quinolone (C7-HHQ) to yield 2-heptyl-3-hydroxy-4-quinolone (PQS). Belongs to the 3-hydroxybenzoate 6-hydroxylase family. | 0.904 |
mvfR | pqsL | PA1003 | PA4190 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | Probable FAD-dependent monooxygenase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). | 0.881 |
mvfR | pvdS | PA1003 | PA2426 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | Sigma factor PvdS; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the sigma-70 factor family. ECF subfamily. | 0.427 |
mvfR | rhl | PA1003 | PA3861 | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. | 0.883 |
phuR | pvdS | PA4710 | PA2426 | Heme/hemoglobin uptake outer membrane receptor PhuR precursor; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene). | Sigma factor PvdS; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the sigma-70 factor family. ECF subfamily. | 0.839 |
pnp | rhl | PA4740 | PA3861 | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. | 0.863 |
pnp | rne | PA4740 | PA2976 | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | Ribonuclease E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Belongs to the RNase E/G family. RNase E subfamily. | 0.992 |
pnp | rnr | PA4740 | PA4937 | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | Exoribonuclease RNase R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. | 0.940 |
pnp | rpoD | PA4740 | PA0576 | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | Sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. | 0.469 |
pqsA | mvfR | PA0996 | PA1003 | Probable coenzyme A ligase; Catalyzes the formation of anthraniloyl-CoA, which is the priming step for entry into the Pseudomonas quinolone signal (PQS) biosynthetic pathway. Also active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. | Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family. | 0.922 |
pqsA | pqsB | PA0996 | PA0997 | Probable coenzyme A ligase; Catalyzes the formation of anthraniloyl-CoA, which is the priming step for entry into the Pseudomonas quinolone signal (PQS) biosynthetic pathway. Also active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. | PqsB; Required for the biosynthesis of the quorum-sensing signaling molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)- quinolone (Pseudomonas quinolone signal or PQS), which are important for biofilm formation and virulence. The PqsC/PqsB complex catalyzes the condensation of 2-aminobenzoylacetate (2-ABA) and octanoyl-CoA to form HHQ. PqsB, together with PqsC, catalyzes the coupling of 2-ABA with the octanoate group, leading to decarboxylation and dehydration, and resulting in closure of the quinoline ring. PqsB is probably required for the proper folding of PqsC ra [...] | 0.998 |