STRINGSTRING
bioD bioD bioC bioC bioF bioF bioB bioB bioA bioA bioH bioH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
bioDDethiobiotin synthase BioD; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. (231 aa)
bioCSAM-dependent methylase involved in biotin synthesis protein BioC; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. (275 aa)
bioF8-amino-7-oxononanoate synthase BioF. (401 aa)
bioBBiotin synthase BioB; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism; Belongs to the radical SAM superfamily. Biotin synthase family. (350 aa)
bioAAdenosylmethionine--8-amino-7-oxononanoate aminotransferase BioA; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (461 aa)
bioHBiotin biosynthesis carboxylesterase BioH; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. (263 aa)
Your Current Organism:
Shewanella oneidensis
NCBI taxonomy Id: 211586
Other names: S. oneidensis MR-1, Shewanella oneidensis ATCC 700550, Shewanella oneidensis MR-1, Shewanella oneidensis str. MR-1, Shewanella oneidensis strain MR-1, Shewanella sp. MR-1
Server load: low (20%) [HD]