Your Input: | |||||
petA | Ubiquinol-cytochrome c reductase FeS subunit PetA; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (196 aa) | ||||
petB | Ubiquinol-cytochrome c reductase cytochrome b subunit PetB; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (404 aa) | ||||
petC | Ubiquinol-cytochrome c reductase cytochrome c1 subunit PetC. (231 aa) | ||||
nuoN | NADH-ubiquinone oxidoreductase subunit N NuoN; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (487 aa) | ||||
nuoM | NADH-ubiquinone oxidoreductase subunit M NuoM. (514 aa) | ||||
nuoL | NADH-ubiquinone oxidoreductase subunit L NuoL. (615 aa) | ||||
nuoK | NADH-ubiquinone oxidoreductase subunit K NuoK; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa) | ||||
nuoJ | NADH-ubiquinone oxidoreductase subunit J NuoJ; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (183 aa) | ||||
nuoI | NADH-ubiquinone oxidoreductase subunit I NuoI; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa) | ||||
nuoH | NADH-ubiquinone oxidoreductase subunit H NuoH; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (322 aa) | ||||
nuoG | NADH-ubiquinone oxidoreductase subunit G NuoG; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (909 aa) | ||||
nuoF | NADH-ubiquinone oxidoreductase subunit F NuoF; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (461 aa) | ||||
nuoE | NADH-ubiquinone oxidoreductase subunit E NuoE. (180 aa) | ||||
nuoCD | NADH-ubiquinone oxidoreductase subunit CD NuoCD; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (601 aa) | ||||
nuoB | NADH-ubiquinone oxidoreductase subunit B NuoB; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (224 aa) | ||||
nuoA | NADH-ubiquinone oxidoreductase subunit A NuoA; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (134 aa) | ||||
SO_1251 | Ferredoxin 4Fe-4S. (83 aa) | ||||
SO_2930 | Bifunctional pectinolytic enzyme/cytochrome c. (907 aa) | ||||
SO_3750 | Predicted non-catalytic member of peptidase subfamily M16B. (471 aa) | ||||
SO_3907 | Cytochrome oxidase copper metallochaperone. (160 aa) | ||||
SO_4142 | Periplasmic monoheme cytochrome c. (109 aa) | ||||
SO_4538 | Predicted non-catalytic member of peptidase subfamily M16B. (492 aa) | ||||
coxB | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (513 aa) | ||||
coxA | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (530 aa) | ||||
coxC | Aa3 type cytochrome c oxidase subunit III CoxC. (291 aa) | ||||
SO_4811 | Periplasmic peptidase family M16B. (443 aa) |