| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| KGL12669.1 | dnaJ | LS73_07855 | LS73_07600 | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.783 |
| KGL12669.1 | dnaK | LS73_07855 | LS73_07755 | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.881 |
| KGL12669.1 | groEL-2 | LS73_07855 | LS73_07860 | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | 0.994 |
| KGL12669.1 | grpE | LS73_07855 | LS73_07750 | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.835 |
| dnaJ | KGL12669.1 | LS73_07600 | LS73_07855 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.783 |
| dnaJ | dnaK | LS73_07600 | LS73_07755 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.999 |
| dnaJ | groEL-2 | LS73_07600 | LS73_07860 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | 0.868 |
| dnaJ | grpE | LS73_07600 | LS73_07750 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.977 |
| dnaJ | hrcA | LS73_07600 | LS73_07745 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.815 |
| dnaK | KGL12669.1 | LS73_07755 | LS73_07855 | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.881 |
| dnaK | dnaJ | LS73_07755 | LS73_07600 | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.999 |
| dnaK | groEL-2 | LS73_07755 | LS73_07860 | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | 0.972 |
| dnaK | grpE | LS73_07755 | LS73_07750 | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.999 |
| dnaK | hrcA | LS73_07755 | LS73_07745 | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.952 |
| groEL-2 | KGL12669.1 | LS73_07860 | LS73_07855 | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.994 |
| groEL-2 | dnaJ | LS73_07860 | LS73_07600 | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.868 |
| groEL-2 | dnaK | LS73_07860 | LS73_07755 | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.972 |
| groEL-2 | grpE | LS73_07860 | LS73_07750 | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.963 |
| groEL-2 | hrcA | LS73_07860 | LS73_07745 | Molecular chaperone GroEL; 60 kDa chaperone family; promotes refolding of misfolded polypeptides especially under stressful conditions; forms two stacked rings of heptamers to form a barrel-shaped 14mer; ends can be capped by GroES; misfolded proteins enter the barrel where they are refolded when GroES binds; many bacteria have multiple copies of the groEL gene which are active under different environmental conditions; the B.japonicum protein in this cluster is expressed constitutively; in Rhodobacter, Corynebacterium and Rhizobium this protein is essential for growth; Derived by autom [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.759 |
| grpE | KGL12669.1 | LS73_07750 | LS73_07855 | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | Molecular chaperone GroES; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.835 |