Your Input: | |||||
| ilvE | Ketomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (356 aa) | ||||
| ydaP | Putative enzyme with pyruvate as substrate; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (574 aa) | ||||
| bdhA | Acetoin reductase/2,3-butanediol dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (346 aa) | ||||
| acoA | Acetoin dehydrogenase E1 component (TPP-dependent alpha subunit); Catalyzes the 2,6-dichlorophenolindophenol-dependent cleavage of acetoin into acetate and acetaldehyde. The alpha subunit is probably the catalytic subunit of the enzyme (By similarity). (333 aa) | ||||
| acoB | Acetoin dehydrogenase E1 component (TPP-dependent beta subunit); Catalyzes the 2,6-dichlorophenolindophenol-dependent cleavage of acetoin into acetate and acetaldehyde. (342 aa) | ||||
| acoC | Acetoin dehydrogenase E2 component (dihydrolipoamide acetyltransferase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (398 aa) | ||||
| acoL | Acetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (458 aa) | ||||
| acoR | Transcriptional regulator; Acts as a transcriptional activator of the acoABCL operon encoding the acetoin dehydrogenase complex. (605 aa) | ||||
| citA | Citrate synthase I; Might regulate the synthesis and function of enzymes involved in later enzymatic steps of Krebs cycle. Loss in activity results in sporulation defect; Belongs to the citrate synthase family. (366 aa) | ||||
| lplJ | Lipoate-protein ligase; Catalyzes both the ATP-dependent activation of exogenously supplied lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of lipoate-dependent enzymes. Is also able to use octanoate as substrate. (331 aa) | ||||
| pdhA | Pyruvate dehydrogenase (E1 alpha subunit); The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (371 aa) | ||||
| pdhB | Pyruvate dehydrogenase (E1 beta subunit); The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (325 aa) | ||||
| pdhC | Pyruvate dehydrogenase (dihydrolipoamide acetyltransferase E2 subunit); The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (442 aa) | ||||
| pdhD | Dihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (470 aa) | ||||
| pycA | Pyruvate carboxylase; Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second, leading to oxaloacetate production. Fulfills an anaplerotic function in B.subtilis as it is necessary for growth on glucose, but is not required for sporulation. (1148 aa) | ||||
| sucC | succinyl-CoA synthetase (beta subunit); Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (385 aa) | ||||
| sucD | succinyl-CoA synthetase (alpha subunit); Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (300 aa) | ||||
| tkt | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (667 aa) | ||||
| citB | Aconitate hydratase (aconitase); Involved in both the tricarboxylic acid (TCA) and methylcitric acid cycles. Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the rehydration of 2- methyl-cis-aconitate to produce 2-methylisocitrate. The apo form of AcnA functions as a RNA-binding regulatory protein which plays a role in the regulation of citrate concentration and in the sporulation. To prevent the accumulation of excessive levels of citrate, it binds near the 5' end of the citZ mRNA, decreasing its stability and thereby limiting the conce [...] (909 aa) | ||||
| yoeD | Putative excisionase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (76 aa) | ||||
| odhB | 2-oxoglutarate dehydrogenase complex (dihydrolipoamide transsuccinylase, E2 subunit); E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (417 aa) | ||||
| odhA | 2-oxoglutarate dehydrogenase (E1 subunit); E1 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the decarboxylation of 2-oxoglutarate, the first step in the conversion of 2-oxoglutarate to succinyl-CoA and CO(2). (944 aa) | ||||
| ilvA | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). (422 aa) | ||||
| ilvD | Dihydroxy-acid dehydratase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the IlvD/Edd family. (558 aa) | ||||
| bkdB | Branched-chain alpha-keto acid dehydrogenase E2 subunit (lipoamide acyltransferase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). (424 aa) | ||||
| bkdAB | Branched-chain alpha-keto acid dehydrogenase E1 subunit; The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). (327 aa) | ||||
| bkdAA | Branched-chain alpha-keto acid dehydrogenase E1 subunit; The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the BCKDHA family. (330 aa) | ||||
| lpdV | Branched-chain alpha-keto acid dehydrogenase E3 subunit (dihydrolipoamide dehydrogenase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (474 aa) | ||||
| buk | Branched-chain fatty-acid kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the acetokinase family. (363 aa) | ||||
| bcd | Branched-chain amino acid dehydrogenase; Catalyzes the reversible deamination of L-leucine to 4- methyl-2-oxopentanoate. (364 aa) | ||||
| ptb | Phosphate butyryl coenzyme A transferase; Catalyzes the conversion of butyryl-CoA through butyryl phosphate to butyrate; Belongs to the phosphate acetyltransferase and butyryltransferase family. (299 aa) | ||||
| lipM | Protein octanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domain of GcvH, an intermediate carrier during protein lipoylation. Is also able to catalyze the reverse reaction. Octanoyl-CoA can also act as a substrate although very poorly. Does not display lipoate protein ligase activity, despite its sequence similarity to LplA; Belongs to the octanoyltransferase LipM family. (278 aa) | ||||
| leuD | 3-isopropylmalate dehydratase (small subunit); Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (199 aa) | ||||
| leuC | 3-isopropylmalate dehydratase (large subunit); Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate; Belongs to the aconitase/IPM isomerase family. LeuC type 1 subfamily. (472 aa) | ||||
| leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 1 subfamily. (365 aa) | ||||
| leuA | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. (518 aa) | ||||
| ilvC | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (342 aa) | ||||
| ilvH | Acetolactate synthase (acetohydroxy-acid synthase) (small subunit); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the acetolactate synthase small subunit family. (172 aa) | ||||
| ilvB | Acetolactate synthase (acetohydroxy-acid synthase) (large subunit); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (574 aa) | ||||
| sdhB | Succinate dehydrogenase (iron-sulfur protein); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (253 aa) | ||||
| sdhA | Succinate dehydrogenase (flavoprotein subunit); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme. (586 aa) | ||||
| sdhC | Succinate dehydrogenase (cytochrome b558 subunit); Di-heme cytochrome of the succinate dehydrogenase complex. (202 aa) | ||||
| gapB | Glyceraldehyde-3-phosphate dehydrogenase; Involved in the gluconeogenesis. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3- bisphosphoglycerate (BPG) using the cofactor NADP. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NADP to NADPH. The reduced NADPH is then exchanged with the second NADP, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG; Belongs to the gl [...] (340 aa) | ||||
| mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa) | ||||
| icd | Isocitrate dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (423 aa) | ||||
| citZ | Citrate synthase II; Might regulate the synthesis and function of enzymes involved in later enzymatic steps of Krebs cycle. Loss in activity results in sporulation defect; Belongs to the citrate synthase family. (372 aa) | ||||
| pyk | Pyruvate kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; In the C-terminal section; belongs to the PEP-utilizing enzyme family. (585 aa) | ||||
| pfkA | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (319 aa) | ||||
| ytsJ | NADP-dependent malic enzyme (conversion of malate into pyruvate); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (410 aa) | ||||
| malS | NAD-dependent malic enzyme (conversion of malate into pyruvate); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (566 aa) | ||||
| pckA | Phosphoenolpyruvate carboxykinase; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. (527 aa) | ||||
| pgi | Glucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. (450 aa) | ||||
| lipA | Lipoyl synthase (lipoic acid synthetase); Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives; Belongs to the radical SAM superfamily. Lipoyl synthase family. (298 aa) | ||||
| fumC | Fumarate hydratase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (462 aa) | ||||
| eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (430 aa) | ||||
| pgm | Phosphoglycerate mutase; Essential for rapid growth and for sporulation. Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate. (511 aa) | ||||
| tpiA | Triose phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (253 aa) | ||||
| pgk | Phosphoglycerate kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the phosphoglycerate kinase family. (394 aa) | ||||
| gapA | Glyceraldehyde-3-phosphate dehydrogenase; Involved in the glycolysis. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3- bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (335 aa) | ||||
| yvkC | Putative phosphotransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the PEP-utilizing enzyme family. (831 aa) | ||||
| yvyI | Putative phosphohexomutase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type e: enzyme; Belongs to the mannose-6-phosphate isomerase type 1 family. (316 aa) | ||||
| alsD | Alpha-acetolactate decarboxylase; Converts acetolactate into acetoin, which can be excreted by the cells. This may be a mechanism for controlling the internal pH of cells in the stationary stage; Belongs to the alpha-acetolactate decarboxylase family. (255 aa) | ||||
| alsS | Alpha-acetolactate synthase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (570 aa) | ||||
| alsR | Transcriptional regulator controlling alsSD and ictEP expression (LysR family); Regulates the expression of the alsSD operon for acetoin biosynthesis. (302 aa) | ||||
| ywjI | Putative fructose 1,6-bisphosphatase class II; Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate. Can functionally substitute for the FBPase class 3 (Fbp) of B.subtilis. (321 aa) | ||||
| ywjH | Putative transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. Does not show fructose-6-P aldolase activity. (212 aa) | ||||
| fbaA | Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (285 aa) | ||||
| lipL | Octanoyl-[GcvH]:protein N-octanoyltransferase; Catalyzes the amidotransfer (transamidation) of the octanoyl moiety from octanoyl-GcvH to the lipoyl domain of the E2 subunit of lipoate-dependent enzymes. (281 aa) | ||||
| ilvK | Branched-chain amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (363 aa) | ||||
| fbp | Fructose-1,6-bisphosphatase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (641 aa) | ||||