STRINGSTRING
cheV cheV cheB cheB cheA cheA cheW cheW cheR cheR mcpB mcpB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cheVCoupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. (303 aa)
cheBMethyl-accepting chemotaxis proteins (MCP)-glutamate methylesterase; Involved in the modulation of the chemotaxis system; catalyzes the demethylation of specific methylglutamate residues introduced into the chemoreceptors (methyl-accepting chemotaxis proteins) by CheR. B.subtilis has an effective methylation-independent adaptation system but must utilize the methylation system for adaptation to high concentrations of attractant; Belongs to the CheB family. (357 aa)
cheAChemotactic two-component sensor histidine kinase; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to CheB, CheY or CheV. (672 aa)
cheWModulation of CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheV and CheW are involved in the coupling of the methyl-accepting chemoreceptors to the central two- component kinase CheA; they are both necessary for efficient chemotaxis. (156 aa)
cheRMethyl-accepting chemotaxis proteins (MCPs) methyltransferase; Methylation of the membrane-bound methyl-accepting chemotaxis proteins (MCP) to form gamma-glutamyl methyl ester residues in MCP. CheR is responsible for the chemotactic adaptation to repellents. (256 aa)
mcpBMethyl-accepting chemotaxis protein; Chemotactic-signal transducers respond to changes in the concentration of attractants and repellents in the environment, transduce a signal from the outside to the inside of the cell, and facilitate sensory adaptation through the variation of the level of methylation. All amino acids serve as attractants in B.subtilis, they appear to cause an increase in the turnover methyl groups, leading to methylation of an unidentified acceptor, while repellents have been shown to cause a decrease in methyl group turnover. The methyl groups are added by a methyl [...] (662 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (16%) [HD]