STRINGSTRING
gmuB gmuB gmuA gmuA gmuC gmuC gmuD gmuD ywbA ywbA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gmuBOligo-alpha-mannoside phosphotransferase system enzyme IIB; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II GmuABC PTS system is involved in the transport of oligo- glucomannans such as cellobiose or mannobiose. (103 aa)
gmuAOligo-alpha-mannoside phosphotransferase system enzyme IIA; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II GmuABC PTS system is involved in the transport of oligo- glucomannans such as cellobiose or mannobiose. (110 aa)
gmuCOligo-alpha-mannoside phosphotransferase system enzyme IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II GmuABC PTS system is involved in the transport of oligo- glucomannans such as cellobiose or mannobiose. (442 aa)
gmuDMannoside-phospho-beta-d-glucosidase; Phospho-beta-D-glucosidase that seems to be involved in the degradation of glucomannan. Is also capable of hydrolyzing aryl- phospho-beta-D-glucosides, although very weakly, and plays only a minor role, if any, in the degradation of these substrates in vivo. Belongs to the glycosyl hydrolase 1 family. (465 aa)
ywbAPutative phosphotransferase system enzyme IIC permease component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. (444 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (14%) [HD]