STRINGSTRING
gcaD gcaD glmM glmM glmS glmS ybcM ybcM gamP gamP nagBB nagBB ybgA ybgA ybgB ybgB nagA nagA nagBA nagBA nagR nagR
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gcaDBifunctional glucosamine-1-phosphate N-acetyltransferase/UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belon [...] (456 aa)
glmMPhosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate (By similarity). Glucosamine-1-phosphate is used for cell wall biosynthesis (Probable); Belongs to the phosphohexose mutase family. (448 aa)
glmSL-glutamine-D-fructose-6-phosphate amidotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (600 aa)
ybcMPutative enzyme; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (104 aa)
gamPPhosphotransferase system (PTS) glucosamine-specific enzyme IICBA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system may be involved in glucosamine transport. (631 aa)
nagBBGlucosamine-6-phosphate isomerase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion; Belongs to the glucosamine/galactosamine-6-phosphate isomerase family. NagB subfamily. (249 aa)
ybgAPutative transcriptional regulator (GntR family); Transcriptional repressor of genes involved in glucosamine transport and utilization. Represses the expression of the gamAP operon by binding to the gamA-gamR intergenic region. (235 aa)
ybgBHypothetical protein; Evidence 5: No homology to any previously reported sequences; PubMedId: 12897008. (91 aa)
nagAN-acetylglucosamine-6-phosphate deacetylase; Involved in the first committed step in the biosynthesis of amino-sugar-nucleotides. Catalyzes the hydrolysis of the N-acetyl group of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) to yield glucosamine 6- phosphate and acetate; Belongs to the metallo-dependent hydrolases superfamily. NagA family. (396 aa)
nagBAN-acetylglucosamine-6-phosphate isomerase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion; Belongs to the glucosamine/galactosamine-6-phosphate isomerase family. NagB subfamily. (242 aa)
nagRTranscriptional regulator (GntR family); Main transcriptional repressor of genes involved in N- acetylglucosamine (GlcNAc) transport and utilization. Represses the expression of the nagAB and nagP operons by binding directly within their upstream regions. Binds to the DNA consensus sequence 5'-ATTGGTATAGACAACT-3'. Also acts as a weak repressor of mapB expression. (243 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (12%) [HD]