STRINGSTRING
katA katA ysfB ysfB glcD glcD glcF glcF katX katX
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
katAVegetative catalase 1; Decomposes hydrogen peroxide into water and oxygen; serves to protect cells from the toxic effects of hydrogen peroxide. (483 aa)
ysfBPutative regulator; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pr: putative regulator; Belongs to the CdaR family. (368 aa)
glcDGlycolate oxidase subunit; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is also able to oxidize D-lactate ((R)- lactate). Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown. Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (470 aa)
glcFGlycolate oxidase iron-sulfur subunit; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is also able to oxidize D-lactate ((R)- lactate). Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown. (444 aa)
katXMajor catalase in spores; Decomposes hydrogen peroxide into water and oxygen; serves to protect cells from the toxic effects of hydrogen peroxide; Belongs to the catalase family. (547 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: medium (56%) [HD]