STRINGSTRING
pgk pgk ldh ldh acoL acoL pdhA pdhA pdhB pdhB pdhC pdhC pdhD pdhD odhA odhA bkdB bkdB lpdV lpdV glcK glcK pyk pyk pfkA pfkA pgi pgi eno eno pgm pgm tpiA tpiA gapA gapA fbaA fbaA iolJ iolJ
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
pgkPhosphoglycerate kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the phosphoglycerate kinase family. (394 aa)
ldhL-lactate dehydrogenase; Catalyzes the conversion of lactate to pyruvate. (321 aa)
acoLAcetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (458 aa)
pdhAPyruvate dehydrogenase (E1 alpha subunit); The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (371 aa)
pdhBPyruvate dehydrogenase (E1 beta subunit); The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (325 aa)
pdhCPyruvate dehydrogenase (dihydrolipoamide acetyltransferase E2 subunit); The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (442 aa)
pdhDDihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (470 aa)
odhA2-oxoglutarate dehydrogenase (E1 subunit); E1 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the decarboxylation of 2-oxoglutarate, the first step in the conversion of 2-oxoglutarate to succinyl-CoA and CO(2). (944 aa)
bkdBBranched-chain alpha-keto acid dehydrogenase E2 subunit (lipoamide acyltransferase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). (424 aa)
lpdVBranched-chain alpha-keto acid dehydrogenase E3 subunit (dihydrolipoamide dehydrogenase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (474 aa)
glcKGlucose kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the ROK (NagC/XylR) family. (321 aa)
pykPyruvate kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; In the C-terminal section; belongs to the PEP-utilizing enzyme family. (585 aa)
pfkA6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (319 aa)
pgiGlucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. (450 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (430 aa)
pgmPhosphoglycerate mutase; Essential for rapid growth and for sporulation. Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate. (511 aa)
tpiATriose phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (253 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase; Involved in the glycolysis. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3- bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (335 aa)
fbaAFructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (285 aa)
iolJ2-deoxy-5-keto-D-gluconic acid 6-phosphate aldolase; Produces dihydroxyacetone phosphate (DHAP or glycerone phosphate) and malonic semialdehyde (MSA or 3-oxopropanoate) from 6- phospho-5-dehydro-2-deoxy-D-gluconate (DKGP). Belongs to the class II fructose-bisphosphate aldolase family. IolJ subfamily. (290 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (10%) [HD]