STRINGSTRING
mtnD mtnD ybgG ybgG yclM yclM asnH asnH yxjG yxjG yxjH yxjH hom hom thrC thrC thrB thrB dapF dapF patB patB asnB asnB lysC lysC nadB nadB nadA nadA mtnN mtnN folD folD ansB ansB cysK cysK cysE cysE lysA lysA dapB dapB metA metA ilvA ilvA kamA kamA odhB odhB tdh tdh dapA dapA dapG dapG asd asd dapL dapL dapH dapH dapX dapX ansZ ansZ mtnB mtnB mtnX mtnX mtnW mtnW mtnE mtnE mtnK mtnK mtnA mtnA metE metE metC metC metI metI samT samT asnO asnO yerI yerI yczE yczE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
mtnDAcireductone dioxygenase (Ni2+ or Fe2+-requiring); Catalyzes 2 different reactions between oxygene and the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene) depending upon the metal bound in the active site. Fe-containing acireductone dioxygenase (Fe-ARD) produces formate and 2-keto-4- methylthiobutyrate (KMTB), the alpha-ketoacid precursor of methionine in the methionine recycle pathway. Ni-containing acireductone dioxygenase (Ni-ARD) produces methylthiopropionate, carbon monoxide and formate, and does not lie on the methionine recycle pathway. (178 aa)
ybgGHomocysteine methylase using (R,S)AdoMet; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme. (315 aa)
yclMAspartate kinase III; Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. (454 aa)
asnHAsparagine synthetase (glutamine-hydrolyzing); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the asparagine synthetase family. (747 aa)
yxjGPutative methyltetrahydrofolate methyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; To B.subtilis YxjH. (378 aa)
yxjHPutative methyl-tetrahydrofolate methyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; To B.subtilis YxjG. (377 aa)
homHomoserine dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (433 aa)
thrCThreonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (352 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (284 aa)
patBPromiscuous cystathionine beta-lyase / cysteine desulfhydrase; Catalyzes the transformation of cystathionine to homocysteine. Also exhibits cysteine desulfhydrase activity in vitro, producing sulfide from cysteine; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. MalY/PatB cystathionine beta-lyase subfamily. (387 aa)
asnBAsparagine synthetase; Main asparagine synthetase in vegetative cells. (632 aa)
lysCAspartokinase II alpha subunit (aa 1->408) and beta subunit (aa 246->408); Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. (408 aa)
nadBL-aspartate oxidase; Catalyzes the oxidation of L-aspartate to iminoaspartate. (531 aa)
nadAQuinolinate synthetase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. (368 aa)
mtnNMethylthioadenosine / S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Belongs to the PNP/UDP phosphorylase family. MtnN subfamily. (231 aa)
folDMethylenetetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (283 aa)
ansBL-aspartase (aspartate ammonia lyase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-II fumarase/aspartase family. Aspartase subfamily. (475 aa)
cysKCysteine synthase; Catalyzes the conversion of O-acetylserine to cysteine. Also acts as a sensor of cysteine availability in the signal transduction pathway modulating CymR activity. When cysteine is present, the pool of O-acetylserine (OAS) is low, which leads to the formation of a CymR- CysK complex and transcriptional repression of the CymR regulon occurs. In the absence of cysteine, the OAS pool is high and the CymR-CysK complex is mostly dissociated, leading to a faster dissociation of CymR from its DNA targets and the lifting of CymR-dependent repression. (308 aa)
cysESerine acetyltransferase; Catalyzes the acetylation of serine by acetyl-CoA to produce O-acetylserine (OAS). (217 aa)
lysADiaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (439 aa)
dapB(4S)-4-hydroxy-2,3,4, 5-tetrahydro-(2S)-dipicolinic acid (HTPA) dehydratase reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate. (267 aa)
metAPutative homoserine O-acetyltransferase; Transfers an acetyl group from acetyl-CoA to L-homoserine, forming acetyl-L-homoserine; Belongs to the MetA family. (301 aa)
ilvAThreonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). (422 aa)
kamALysine 2,3-aminomutase; Catalyzes the interconversion of L-alpha-lysine and L-beta- lysine; Belongs to the radical SAM superfamily. KamA family. (471 aa)
odhB2-oxoglutarate dehydrogenase complex (dihydrolipoamide transsuccinylase, E2 subunit); E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (417 aa)
tdhThreonine 3-dehydrogenase; Catalyzes the NAD(+)-dependent oxidation of L-threonine to 2- amino-3-ketobutyrate; Belongs to the zinc-containing alcohol dehydrogenase family. (347 aa)
dapADihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (290 aa)
dapGAspartokinase I (alpha and beta subunits); Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. Belongs to the aspartokinase family. (404 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (346 aa)
dapLN-acetyl-diaminopimelate deacetylase; Catalyzes the conversion of N-acetyl-diaminopimelate to diaminopimelate and acetate. (374 aa)
dapHTetrahydrodipicolinate N-acetyltransferase; Catalyzes the transfer of an acetyl group from acetyl-CoA to tetrahydrodipicolinate. (236 aa)
dapXN-acetyl-L,L-diaminopimelate aminotransferase; Essential for murein biosynthesis. Probably catalyzes the conversion of L-2-acetamido-6-oxopimelate to N-acetyl-LL- 2,6-diaminopimelate (Probable); Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (393 aa)
ansZL-asparaginase 2 (putative lipoprotein); Catalyzes the conversion of L-asparagine to L-aspartate and ammonium. (375 aa)
mtnBMethylthioribulose-1-phosphate dehydratase (MTRu-1-P dehydratase); Catalyzes the dehydration of methylthioribulose-1-phosphate (MTRu-1-P) into 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P). Belongs to the aldolase class II family. MtnB subfamily. (209 aa)
mtnX2-hydroxy-3-keto-5-methylthiopentenyl-1- phosphatephosphatase (HK-MTPenyl-1-P phosphatase); Dephosphorylates 2-hydroxy-3-keto-5-methylthiopentenyl-1- phosphate (HK-MTPenyl-1-P) yielding 1,2-dihydroxy-3-keto-5- methylthiopentene (DHK-MTPene). (235 aa)
mtnW2,3-diketo-5-methylthiopentyl-1-phosphate enolase (DK-MTP-1-P enolase); Catalyzes the enolization of 2,3-diketo-5-methylthiopentyl-1- phosphate (DK-MTP-1-P) into 2-hydroxy-3-keto-5-methylthiopentenyl-1- phosphate (HK-MTPenyl-1-P); Belongs to the RuBisCO large chain family. Type IV subfamily. (405 aa)
mtnEMethionine-glutamine aminotransferase; Catalyzes the formation of methionine from 2-keto-4- methylthiobutyrate (KMTB). (398 aa)
mtnKMethylthioribose kinase (methionine salvage pathway); Catalyzes the phosphorylation of methylthioribose into methylthioribose-1-phosphate. (397 aa)
mtnAMethylthioribose-1-phosphate isomerase (methionine salvage pathway); Catalyzes the interconversion of methylthioribose-1-phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1-P). (353 aa)
metECobalamin-independent methionine synthase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. (762 aa)
metCCystathionine beta-lyase; Catalyzes the transformation of cystathionine into homocysteine. Also exhibits cysteine desulfhydrase activity in vitro, producing sulfide from cysteine; Belongs to the trans-sulfuration enzymes family. (390 aa)
metICystathionine gamma-synthase and O-acetylhomoserine thiolyase; Catalyzes the formation of L-cystathionine from O-acetyl-L- homoserine and L-cysteine. Cannot use O-succinyl-L-homoserine as substrate. Also exhibits O-acetylhomoserine thiolyase activity, catalyzing the synthesis of L-homocysteine from O-acetyl-L-homoserine and sulfide. (373 aa)
samTBifunctional homocysteine S-methyltransferase/5,10-methylenetetrahydrofolate reductase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme. (612 aa)
asnOAsparagine synthetase; Asparagine synthetase involved in sporulation. (614 aa)
yerIPutative kinase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the pseudomonas-type ThrB family. (336 aa)
yczEN-terminal part of 4'-phosphopantetheinyl transferase (Surfactin synthetase-activating enzyme); Evidence 7: Gene remnant; Product type e: enzyme. (215 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (26%) [HD]