STRINGSTRING
rpmH rpmH serS serS tadA tadA rsmI rsmI metS metS rnmV rnmV ksgA ksgA ctc ctc pth pth yabR yabR tilS tilS dusB dusB lysS lysS gltX gltX cysS cysS mrnC mrnC rlmB rlmB sigH sigH rpmGB rpmGB nusG nusG rplK rplK rplA rplA rplJ rplJ rplL rplL rpoB rpoB rpoC rpoC rplGB rplGB rpsL rpsL rpsG rpsG fusA fusA tufA tufA rpsJ rpsJ rplC rplC rplD rplD rplW rplW rplB rplB rpsS rpsS rplV rplV rpsC rpsC rplP rplP rpmC rpmC rpsQ rpsQ rplNA rplNA rplX rplX rplE rplE rpsNA rpsNA rpsH rpsH rplF rplF rplR rplR rpsE rpsE rpmD rpmD rplO rplO infA infA rpmJ rpmJ rpsM rpsM rpsK rpsK rpoA rpoA rplQ rplQ truA truA rplM rplM rpsI rpsI sigW sigW skfC skfC ybfQ ybfQ sipU sipU ydaF ydaF sigB sigB ydcI ydcI vmlR vmlR tsaE tsaE tsaB tsaB rimI rimI tsaD tsaD ydiL ydiL gatC gatC gatA gatA gatB gatB rlmCD rlmCD yfjO yfjO dusC dusC rpsNB rpsNB queG queG trmL trmL yhcT yhcT sigM sigM yhaM yhaM yhfI yhfI lplJ lplJ yhfN yhfN sipV sipV trpS trpS yjbO yjbO trnE trnE xpf xpf sigI sigI sipT sipT rnjA rnjA rnpZA rnpZA defB defB ylaC ylaC rsmD rsmD ylbM ylbM rpmF rpmF mraW mraW sigE sigE sigG sigG ileS ileS rluD rluD pyrR pyrR yloA yloA rpoZ rpoZ defA defA fmt fmt rsmB rsmB rlmN rlmN rpmB rpmB rnc rnc rpsP rpsP rimM rimM trmD trmD rplS rplS rbgA rbgA trmFO trmFO sigD sigD rpsB rpsB tsf tsf frr frr proS proS rimP rimP nusA nusA infB infB rbfA rbfA truB truB rpsO rpsO pnpA pnpA rnjB rnjB rny rny miaB miaB miaA miaA yobR yobR nrdEB nrdEB mtbP mtbP ypiP ypiP ypsC ypsC asnS asnS birA birA cca cca mtrB mtrB rpfA rpfA ypbD ypbD sigX sigX rluB rluB sipS sipS sigF sigF rnz rnz yqxC yqxC nusB nusB efp efp lipM lipM sipW sipW rpmGA rpmGA trmK trmK sigA sigA glyS glyS glyQ glyQ yqfG yqfG rpsU rpsU mtaB mtaB rsmE rsmE lepA lepA rpsT rpsT spoIVCA spoIVCA yrkS yrkS sigZ sigZ sigV sigV yrrT yrrT greA greA yrrO yrrO yrrN yrrN yrrM yrrM yrrK yrrK alaS alaS mnmA mnmA yrvM yrvM aspS aspS hisS hisS tgt tgt queA queA rpmA rpmA rplU rplU comC comC valS valS rph rph pheT pheT pheS pheS ysgA ysgA rplT rplT rpmI rpmI infC infC thrS thrS thiI thiI rpsD rpsD tyrS tyrS trmB trmB ytzG ytzG leuS leuS rpmEB rpmEB yugI yugI yukF yukF sufA sufA lipA lipA yusF yusF gcvH gcvH sigO sigO smpB smpB sigL sigL hisZ hisZ prfB prfB tsaC tsaC prfA prfA rpmEA rpmEA rho rho rpoE rpoE argS argS thrZ thrZ lipL lipL spsD spsD ywbD ywbD tyrZ tyrZ sigY sigY yydA yydA rplI rplI yyaK yyaK rpsR rpsR rpsF rpsF rsmG rsmG trmF trmF mnmE mnmE rnpA rnpA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpmHRibosomal protein L34; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; structure. (44 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (425 aa)
tadAtRNA specific adenosine deaminase; Catalyzes the deamination of adenosine to inosine at the wobble position 34 of tRNA(Arg2); Belongs to the cytidine and deoxycytidylate deaminase family. (161 aa)
rsmIRibosomal RNA small subunit methyltransferase I; Catalyzes the 2'-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA. (292 aa)
metSmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 2B subfamily. (664 aa)
rnmVRibonuclease M5; Required for correct processing of both the 5' and 3' ends of 5S rRNA precursor. Cleaves both sides of a double-stranded region yielding mature 5S rRNA in one step. Releases 5'-phosphoryl and 3'- hydroxy termini. (186 aa)
ksgADimethyladenosine 16S ribosomal RNA transferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits; Belongs to the class I-like SAM-binding methyltransferase superfamily. rRNA adenine N(6)-methyltransferase family. RsmA subfamily. (292 aa)
ctcRibosomal protein Ctc, binding 5S RNA; Not required for exponential growth; probably functions in vegetatively growing cells, maybe required for accurate translation under stress conditions. (204 aa)
pthpeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (188 aa)
yabRPutative RNA degradation protein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the peptidase U57 family. (128 aa)
tilStRNAile lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (472 aa)
dusBtRNA-dihydrouridine synthase B; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the Dus family. (333 aa)
lysSlysyl-tRNA synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-II aminoacyl-tRNA synthetase family. (499 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (483 aa)
cysScysteinyl-tRNA synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I aminoacyl-tRNA synthetase family. (466 aa)
mrnCRibonuclease for 23S RNA maturation; Involved in correct processing of both the 5' and 3' ends of 23S rRNA precursor. Processes 30S rRNA precursor transcript even in absence of ribonuclease 3 (Rnc); Rnc processes 30S rRNA into smaller rRNA precursors. Cleaves more efficiently on assembled 50S ribosomal subunits. Cleavage is strongly stimulated by ribosomal protein L3 (RplC); 20-30% DMSO can replace RplC, suggesting RplC may alter rRNA conformation. (143 aa)
rlmB23S rRNA methyltransferase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (249 aa)
sigHRNA polymerase sigma-30 factor (sigma(H)); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in the transition to post- exponential phase in the beginning of sporulation. It is also required for transcription of several stationary phase genes. (218 aa)
rpmGBRibosomal protein L33; Plays a role in sporulation at high temperatures. (49 aa)
nusGTranscription antitermination factor; Participates in transcription elongation, termination and antitermination. Stimulates RNA polymerase pausing at U107 and U144 in the trp leader. NusG-stimulated pausing is sequence specific. Does not affect trp leader termination. (177 aa)
rplKRibosomal protein L11 (BL11); Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors; Belongs to the universal ribosomal protein uL11 family. (141 aa)
rplARibosomal protein L1 (BL1); Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. Belongs to the universal ribosomal protein uL1 family. (232 aa)
rplJRibosomal protein L10 (BL5); Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors (such as IF-2, EF-Tu, EF-G and RF3). (166 aa)
rplLRibosomal protein L12 (BL9); Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation. (123 aa)
rpoBRNA polymerase (beta subunit); DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1193 aa)
rpoCRNA polymerase (beta' subunit); DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1199 aa)
rplGBAlternative ribosomal protein L7A; RNA-binding protein that recognizes the K-turn motif present in ribosomal RNA, but also in box C/D and box C'/D' sRNAs. Belongs to the eukaryotic ribosomal protein eL8 family. (82 aa)
rpsLRibosomal protein S12 (BS12); With S4 and S5 plays an important role in translational accuracy. (138 aa)
rpsGRibosomal protein S7 (BS7); One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
fusAElongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (By similarity). (692 aa)
tufAElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa)
rpsJRibosomal protein S10 (BS13); Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (102 aa)
rplCRibosomal protein L3 (BL3); One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity). Strongly stimulates 23S rRNA precursor processing by mini-ribonuclease 3 (MrnC); 20-30% DMSO can replace L3, suggesting the protein may alter rRNA conformation; Belongs to the universal ribosomal protein uL3 family. (209 aa)
rplDRibosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (207 aa)
rplWRibosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (95 aa)
rplBRibosomal protein L2 (BL2); One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (277 aa)
rpsSRibosomal protein S19 (BS19); Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
rplVRibosomal protein L22 (BL17); This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (113 aa)
rpsCRibosomal protein S3 (BS3); Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (218 aa)
rplPRibosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (144 aa)
rpmCRibosomal protein L29; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type s: structure. (66 aa)
rpsQRibosomal protein S17 (BS16); One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (87 aa)
rplNARibosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rplXRibosomal protein L24 (BL23); One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. Has also been isolated as a basic, heat-shock stable DNA- binding protein from the B.subtilis nucleoid. It binds cooperatively to double-stranded supercoiled DNA which it further compacts into complexes 15-17 nm in diameter. Overexpression of the protein disrupts nucleoid segregation and positioning. (103 aa)
rplERibosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rpsNARibosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site (By similarity). The major S14 protein in the ribosome. Required for binding of S2 and S3 to the 30S subunit and for association of the 30S with the 50S subunit; Belongs to the universal ribosomal protein uS14 family. Zinc-binding uS14 subfamily. (61 aa)
rpsHRibosomal protein S8 (BS8); One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa)
rplFRibosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. (179 aa)
rplRRibosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (120 aa)
rpsERibosomal protein S5; With S4 and S12 plays an important role in translational accuracy; many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations); Belongs to the universal ribosomal protein uS5 family. (166 aa)
rpmDRibosomal protein L30 (BL27); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type s: structure. (59 aa)
rplORibosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (146 aa)
infAInitiation factor IF-I; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
rpmJRibosomal protein L36 (ribosomal protein B); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor. (37 aa)
rpsMRibosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (121 aa)
rpsKRibosomal protein S11 (BS11); Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (131 aa)
rpoARNA polymerase (alpha subunit); DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (314 aa)
rplQRibosomal protein L17 (BL15); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type s: structure. (120 aa)
truAPseudouridylate synthase I; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs. (247 aa)
rplMRibosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (145 aa)
rpsIRibosomal protein S9; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type s: structure. (130 aa)
sigWRNA polymerase ECF(extracytoplasmic function)-type sigma factor W; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Sigma-W controls genes involved in response to cell envelope stress such as antimicrobial peptides , alkaline pH , transport processes and detoxification. (187 aa)
skfCSporulation killing factor biosynthesis and export; Required for production of the bacteriocin SkfA. (496 aa)
ybfQPutative enzyme with rhodanese domain; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the UPF0176 family. (322 aa)
sipUType I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. (187 aa)
ydaFPutative ribosomal protein N-acetyltransferase; Putative N-acetyltransferase. May act on ribosomal proteins (Potential); Belongs to the acetyltransferase family. (183 aa)
sigBRNA polymerase sigma-37 factor (sigma(B)); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Sigma B is not essential for sporulation; rather it is required for maximal expression of ctc and csbA which are transcribed in the early stationary phase under conditions inimical to sporulation. May play a role in the ability of the bacterium to adapt to various stresses but is not essential for its survival under these conditions. Positively regulates expression of its own operon; Belongs to the sigma-70 fac [...] (262 aa)
ydcIPutative RNA helicase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (719 aa)
vmlRATP-binding cassette efflux transporter; Recognizes and binds in the vacant E-site of ribosomes stalled by some peptidyltransferase center (PTC)-targeting antibiotics. Makes contact with the PTC and both ribosomal subunits. Induces conformational changes in the P-site, which allows it to dislodge the antibiotic from its PTC binding site. Binds to ribosomes either directly following translation initation or subsequent to E tRNA release during elongation. Involved in resistance to a narrow spectrum of antibiotics (the streptogramin A antibiotic virginiamycin M, the lincosamide antibiotic [...] (547 aa)
tsaEtRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaD and TsaB; this reaction does not require ATP in vitro. TsaE seems to play an indirect role in the t(6)A biosynthesis pathway, possibly in regulating the core enzymatic function of TsaD. Displays ATPase activity in vitro, which is modulated by the oligo [...] (158 aa)
tsaBtRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaD and TsaE; this reaction does not require ATP in vitro. TsaB seems to play an indirect role in the t(6)A biosynthesis pathway, possibly in regulating the core enzymatic function of TsaD. (229 aa)
rimIRibosomal protein S18 alanine N-acetyltransferase; Acetylates the N-terminal alanine of ribosomal protein S18. (151 aa)
tsaDtRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB; this reaction does not require ATP in vitro. TsaD likely plays a direct catalytic role in this reaction. Belongs to the KAE1 / TsaD family. (346 aa)
ydiLPutative membrane protease; May function as endopeptidase which proteolytically removes the C-terminal three residues of farnesylated peptides containing the CAAX motif where C is cysteine, A is an aliphatic amino acid and X is any amino acid; Belongs to the peptidase U48 family. (244 aa)
gatCglutamyl-tRNA(Gln) amidotransferase (subunit C); Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) (By similarity); Belongs to the GatC family. (96 aa)
gatAglutamyl-tRNA(Gln) amidotransferase (subunit A); Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (485 aa)
gatBglutamyl-tRNA(Gln) amidotransferase (subunit B); Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa)
rlmCDMethyltransferase of m5U747 and m5U1939 in 23S RNA; Catalyzes the formation of 5-methyl-uridine at positions 747 (m5U747) and 1939 (m5U1939) in 23S rRNA. (459 aa)
yfjOPutative RNA methyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the class I-like SAM-binding methyltransferase superfamily. RNA M5U methyltransferase family. (466 aa)
dusCtRNA-dihydrouridine synthase 2; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the Dus family. (325 aa)
rpsNBAlternative ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (89 aa)
queGEpoxyqueuosine reductase; Catalyzes the conversion of epoxyqueuosine (oQ) to queuosine (Q), which is a hypermodified base found in the wobble positions of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr). (386 aa)
trmLtRNA (cytidine(34)-2'-O)-methyltransferase TrmL; Could methylate the ribose at the nucleotide 34 wobble position in tRNA; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. TrmL subfamily. (160 aa)
yhcTPutative RNA pseudouridine synthase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (302 aa)
sigMRNA polymerase ECF (extracytoplasmic function)-type sigma factor (sigma(M)); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma factors are held in an inactive form by a cognate anti-sigma factor (YhdL) until released. This sigma factor is involved in the maintenance of membrane and cell wall integrity in response to environmental stresses including salt, acid, ethanol and antibiotics stress. Partially regulates transcription from a number of genes including disA. (163 aa)
yhaM3'-5' exonuclease; Shows a 3'-5' exoribonuclease activity as well as single- stranded DNA 3'-5'exonuclease activity. Plays a role in the secondary pathway of 23S rRNA 3' end maturation; Belongs to the YhaM family. (314 aa)
yhfIPutative metal-dependent hydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (244 aa)
lplJLipoate-protein ligase; Catalyzes both the ATP-dependent activation of exogenously supplied lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of lipoate-dependent enzymes. Is also able to use octanoate as substrate. (331 aa)
yhfNPutative membrane metalloprotease; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (426 aa)
sipVType I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. (168 aa)
trpStryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (330 aa)
yjbOPseudouridylate synthase; Evidence 2b: Function of strongly homologous gene; Product type e: enzyme. (283 aa)
trnEtRNA editing protein; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the prolyl-tRNA editing family. YbaK/EbsC subfamily. (159 aa)
xpfPutative RNA polymerase PBSX sigma factor-like; Positive regulatory protein that acts at the late promoter PL. (169 aa)
sigIRNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of cell wall metabolism in response to heat stress. Acts by regulating the expression of genes such as bcrC, mreBH and lytE. Also plays a role in survival at low temperatures. Belongs to the sigma-70 factor family. SigI subfamily. (251 aa)
sipTType I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. (193 aa)
rnjARibonuclease J1; An RNase that has endonuclease and 5'-3' exonuclease activity, playing a role in both rRNA and mRNA stability and degradation. Endonuclease activity can cleave within 4 nucleotides of the 5'-end of a triphosphorylated RNA. Endonuclease digestion by the RNase J1/J2 complex occurs at a different site and in some cases more efficiently than J1 or J2 alone. The exonuclease activity of the J1/J2 complex is highly processive on substrates longer than 5 nucleotides, on shorter substrates is distributive. Preferentially cleaves ssRNA, possibly in AU-rich regions. The 5'-exonuc [...] (555 aa)
rnpZAOmega 1 subunit of RNA polymerase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type f: factor; Belongs to the UPF0356 family. (69 aa)
defBFormylmethionine deformylase A; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (184 aa)
ylaCRNA polymerase ECF-type sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor contributes to oxidative stress resistance. (173 aa)
rsmDPutative ribosomal RNA small subunit methyltransferase D; May catalyze the S-adenosyl-L-methionine-dependent methylation of a specific base in rRNA. (184 aa)
ylbMConserved hypothetical protein; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of elongator tRNA(Met), using acetate and ATP as substrates. First activates an acetate ion to form acetyladenylate (Ac- AMP) and then transfers the acetyl group to tRNA to form ac(4)C34. (415 aa)
rpmFRibosomal protein L32; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor. (59 aa)
mraWS-adenosyl-dependent methyltransferase active on membrane-located substrates; Specifically methylates the N4 position of cytidine in position 1402 (C1402) of 16S rRNA. (311 aa)
sigERNA polymerase sporulation-specific sigma-29 factor (sigma-E); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of sporulation specific genes. (239 aa)
sigGRNA polymerase sporulation-specific sigma factor (sigma-G); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of sporulation specific genes in the forespore. (260 aa)
ileSisoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). (921 aa)
rluDPseudouridylate synthase; Evidence 2b: Function of strongly homologous gene; Product type e: enzyme. (303 aa)
pyrRTranscriptional attenuator and uracil phosphoribosyltransferase activity; Regulates transcriptional attenuation of the pyrimidine nucleotide (pyr) operon by binding in a uridine-dependent manner to specific sites on pyr mRNA. This disrupts an antiterminator hairpin in the RNA and favors formation of a downstream transcription terminator, leading to a reduced expression of downstream genes; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (181 aa)
yloAPutative persistent RNA/DNA binding protein; Part of the ribosome quality control system (RQC). Recruits Ala-charged tRNA and directs the elongation of stalled nascent chains on 50S ribosomal subunits, leading to non-templated C-terminal Ala extensions (Ala tail). The Ala tail promotes nascent chain degradation. Selectively binds tRNA(Ala)(UGC), which is presumably the sole source of tRNA(Ala) used for Ala tailing directed by this protein. May add between 1 and at least 8 Ala residues; detection of the Ala tail requires either deletion of clpP or its inhibition. Binds to 50S ribosomal [...] (572 aa)
rpoZOmega subunit of RNA polymerase; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits (By similarity). (67 aa)
defAPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions (By similarity). (160 aa)
fmtmethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (317 aa)
rsmBRNA-binding Sun protein; Specifically methylates the cytosine at position 967 (m5C967) of 16S rRNA. (447 aa)
rlmN23S rRNA m2A2503 methyltransferase; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs; Belongs to the radical SAM superfamily. RlmN family. (363 aa)
rpmBRibosomal protein L28; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor. (62 aa)
rncRibonuclease III; Digests double-stranded RNA. Involved in the processing of ribosomal RNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Also processes pre-scRNA (the precursor of the signal recognition particle RNA). Probably also processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Probably processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (249 aa)
rpsPRibosomal protein S16 (BS17); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type f: factor. (90 aa)
rimM16S rRNA processing protein; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (174 aa)
trmDtRNA(m1G37)methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (243 aa)
rplSRibosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site; Belongs to the bacterial ribosomal protein bL19 family. (115 aa)
rbgARibosome biogenesis GTPase A; Essential protein that is required for a late step of 50S ribosomal subunit assembly. Has GTPase activity that is stimulated by interaction with the immature 50S ribosome subunit. Binds to the 23S rRNA. Required for the association of ribosomal proteins RplP and RpmA with the large subunit. (282 aa)
trmFOtRNA:m(5)U-54 methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs. (435 aa)
sigDRNA polymerase sigma-28 factor (sigma-D); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This alternative sigma factor is required for the transcription of the flagellin and motility genes as well as for wild- type chemotaxis. (254 aa)
rpsBRibosomal protein S2; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; structure. (246 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome (By similarity); Belongs to the EF-Ts family. (293 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (564 aa)
rimPRibosome maturation factor; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (156 aa)
nusATranscription translation coupling factor involved in Rho-dependent transcription termination; Participates in both transcription termination and antitermination. (371 aa)
infBInitiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (716 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (117 aa)
truBtRNA pseudouridine 55 synthase; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (309 aa)
rpsORibosomal protein S15 (BS18); One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa)
pnpAPolynucleotide phosphorylase (PNPase); Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. Necessary for competence development in Bacillus subtilis. May be necessary for modification of the srfA transcript (stabilization or translation activation). (705 aa)
rnjBRibonuclease J2; Endonucleolytically cleaves the 5'-leader sequence of certain mRNAs. Endonuclease digestion by the RNase J1/J2 complex occurs at a different site and in some cases more efficiently than J1 or J2 alone. The exonuclease activity of the J1/J2 complex is highly processive on substrates longer than 5 nucleotides, on shorter substrates is distributive. Plays a role in mRNA maturation and stability. Appears to have a limited effect on 16S rRNA maturation, despite its similarity to RNase J1. This subunit alone has very poor 5'-3' exonuclease activity. Belongs to the metallo-be [...] (555 aa)
rnyEndoribonuclease Y; Endoribonuclease that initiates mRNA decay. Initiates the decay of all SAM-dependent riboswitches, such as yitJ riboswitch. Involved in processing of the gapA operon mRNA, it cleaves between cggR and gapA. Is also the decay-initiating endonuclease for rpsO mRNA. Belongs to the RNase Y family. (520 aa)
miaBEnzyme for ms(2)i(6)A formation for tRNA modification; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine. (509 aa)
miaAtRNA isopentenylpyrophosphate transferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (314 aa)
yobRPutative acetyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the acetyltransferase family. (247 aa)
nrdEBSPbeta phage ribonucleoside reductase alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity); Belongs to the ribonucleoside diphosphate reductase large chain family. (1084 aa)
mtbPDNA (cytosine-5-)-methyltransferase; This enzyme methylates the first cytosine within the sequences GGCC and GCNGC; Belongs to the class I-like SAM-binding methyltransferase superfamily. C5-methyltransferase family. (443 aa)
ypiPPutative methyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (257 aa)
ypsCPutative methylase with RNA interaction domain; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the methyltransferase superfamily. (385 aa)
asnSasparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (430 aa)
birABiotin acetyl-CoA-carboxylase ligase and biotin regulon repressor; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor; Belongs to the biotin--protein ligase family. (325 aa)
ccatRNA nucleotidyltransferase; Catalyzes the addition and repair of the essential 3'- terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate. Has no poly(A) polymerase activity. (397 aa)
mtrBTryptophan operon RNA-binding attenuation protein (TRAP); Required for transcription attenuation control in the trp operon. This trans-acting factor binds to trinucleotide repeats (GAG or UAG) located in the trp leader transcript causing transcription termination. Binds the leader RNA only in presence of L-tryptophan. Belongs to the MtrB family. (75 aa)
rpfARNA degradation presenting factor (ribosomal protein S1 homolog); Plays a role in sporulation; Belongs to the bacterial ribosomal protein bS1 family. (382 aa)
ypbDPutative membrane protease; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (189 aa)
sigXRNA polymerase ECF(extracytoplasmic function)-type sigma factor sigma(X); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. May be involved in the regulation of iron metabolism; Belongs to the sigma-70 factor family. ECF subfamily. (194 aa)
rluBPseudouridine synthase; Responsible for synthesis of pseudouridine from uracil-2633 in 23S ribosomal RNA; Belongs to the pseudouridine synthase RsuA family. (244 aa)
sipSType I signal peptidase; Not essential for cell viability, but required for efficient secretion of many proteins. (184 aa)
sigFRNA polymerase sporulation-specific sigma factor (sigma-F); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of sporulation specific genes. Interaction with SpoIIAB inhibits sigma-F activity throughout the cell before the formation of the asymmetric septum; after septation the interaction is confined to the mother cell, and sigma F activity is released in the prespore. Responsible for expression of csfB (the anti-sigma-G factor Gin). (255 aa)
rnzRibosomal protein L31C pseudogene; Zinc phosphodiesterase, which displays some tRNA 3'- processing endonuclease activity. Probably involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA. (307 aa)
yqxCPutative methyltransferase with RNA binding domain; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the TlyA family. (281 aa)
nusBTranscription termination factor NusB; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (131 aa)
efpElongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase (By similarity). (185 aa)
lipMProtein octanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domain of GcvH, an intermediate carrier during protein lipoylation. Is also able to catalyze the reverse reaction. Octanoyl-CoA can also act as a substrate although very poorly. Does not display lipoate protein ligase activity, despite its sequence similarity to LplA; Belongs to the octanoyltransferase LipM family. (278 aa)
sipWType I signal peptidase; Required for the cleavage of the signal sequence of TasA and TapA, which are involved in biofilm formation. Belongs to the peptidase S26B family. (190 aa)
rpmGARibosomal protein L33; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; structure. (49 aa)
trmKtRNA (adenine(22)-N(1))-methyltransferase; Catalyzes the S-adenosyl-L-methionine-dependent formation of N(1)-methyladenine at position 22 (m1A22) in tRNA. (216 aa)
sigARNA polymerase major sigma-43 factor (sigma-A); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth; Belongs to the sigma-70 factor family. RpoD/SigA subfamily. (371 aa)
glySglycyl-tRNA synthetase (beta subunit); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (679 aa)
glyQglycyl-tRNA synthetase (alpha subunit); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (295 aa)
yqfGPutative metal-dependent hydrolase; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. (157 aa)
rpsURibosomal protein S21; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type s: structure; Belongs to the bacterial ribosomal protein bS21 family. (57 aa)
mtaBtRNA N(6)-threonylcarbamoyladenosine (t(6)A) methylthiotransferase; Catalyzes the methylthiolation of N6- threonylcarbamoyladenosine (t(6)A), leading to the formation of 2- methylthio-N6-threonylcarbamoyladenosine (ms(2)t(6)A) at position 37 in tRNAs that read codons beginning with adenine. Belongs to the methylthiotransferase family. MtaB subfamily. (451 aa)
rsmEMethylase of U1498 in 16S rRNA; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit (By similarity). (256 aa)
lepARibosomal elongation factor, GTPase; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (612 aa)
rpsTRibosomal protein S20 (BS20); Binds directly to 16S ribosomal RNA; Belongs to the bacterial ribosomal protein bS20 family. (88 aa)
spoIVCARNA polymerase sporulation-specific sigma-K factor precursor (Sigma-27) (N-terminal half); Putative site-specific recombinase having a very important role in sporulation. It probably plays a role in the recombination of SpoIIIC and SpoIVCB to form sigma K factor. (500 aa)
yrkSRNA polymerase sporulation-specific sigma-K factor precursor (Sigma-27) (C-terminal fragment); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type f: factor. (54 aa)
sigZRNA polymerase ECF(extracytoplasmic function)-type sigma factor (sigma-Z); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (176 aa)
sigVRNA polymerase ECF(extracytoplasmic function)-type sigma factor (sigma(V)); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Positively regulates the expression of proteins involved in stress responses against bacitracin, paraquat and tellurite. Belongs to the sigma-70 factor family. ECF subfamily. (166 aa)
yrrTPutative AdoMet-dependent methyltransferase; Could be a S-adenosyl-L-methionine-dependent methyltransferase; Belongs to the methyltransferase superfamily. YrrT family. (213 aa)
greATranscription elongation factor; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides (By similarity); Belongs to the GreA/GreB family. (157 aa)
yrrOPutative hydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the peptidase U32 family. (422 aa)
yrrNPutative hydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the peptidase U32 family. (309 aa)
yrrMPutative acyl-CoA O-methyltransferase; Catalyzes the methylation of 5-hydroxyuridine (ho5U) to form 5-methoxyuridine (mo5U) at position 34 in tRNAs. (217 aa)
yrrKPutative Holliday junction resolvase; Could be a nuclease involved in processing of the 5'-end of pre-16S rRNA. (138 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (878 aa)
mnmAtRNA 2-thiouridylase; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34. (371 aa)
yrvMPutative factor involved in sulfur-containing coenzyme synthesis; Catalyzes the ATP-dependent dehydration of threonylcarbamoyladenosine at position 37 (t(6)A37) to form cyclic t(6)A37 (ct(6)A37) in tRNAs that read codons beginning with adenine. (254 aa)
aspSaspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (592 aa)
hisShistidyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (424 aa)
tgttRNA-guanine transglycosylase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form the [...] (381 aa)
queAS-adenosylmethionine tRNA ribosyltransferase-isomerase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (342 aa)
rpmARibosomal protein L27 (BL24); Plays a role in sporulation at high temperatures. (94 aa)
rplURibosomal protein L21 (BL20); This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (102 aa)
comCMembrane protease and transmethylase; Cleaves type-4 fimbrial leader sequence and methylates the N- terminal (generally Phe) residue; Belongs to the peptidase A24 family. (248 aa)
valSvalyl-tRNA synthetase; As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA-dependent manner (By similarity). Catalyzes the attachment of valine to tRNA(Val); Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (880 aa)
rphRibonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. Plays a role in the secondary pathway of 23S rRNA 3' end maturation. (245 aa)
pheTphenylalanyl-tRNA synthetase (beta subunit); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (804 aa)
pheSphenylalanyl-tRNA synthetase (alpha subunit); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (344 aa)
ysgAPutative RNA methylase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (248 aa)
rplTRibosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (By similarity). (119 aa)
rpmIRibosomal protein L35; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; structure. (66 aa)
infCInitiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (173 aa)
thrSthreonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr); Belongs to the class-II aminoacyl-tRNA synthetase family. (643 aa)
thiIPutative persulfide ATP pyrophosphatase involved in thiamine biosynthesis and tRNA modification; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (401 aa)
rpsDRibosomal protein S4 (BS4); One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. S4 represses its own expression; it is not know if this is at the level of translation or of mRNA stability; Belongs to the universal ribosomal protein uS4 family. (200 aa)
tyrStyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr). (422 aa)
trmBtRNA (guanine-N(7)-)-methyltransferase; Catalyzes the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA; Belongs to the class I-like SAM-binding methyltransferase superfamily. TrmB family. (213 aa)
ytzGPutative 16S pseudouridylate synthase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (239 aa)
leuSleucyl-tRNA synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I aminoacyl-tRNA synthetase family. (804 aa)
rpmEBRibosomal protein L31; While neither of the L31 paralogs is essential, this protein does not seem to function as the main L31 protein. Has a higher affinity for 70S ribosomes than the zinc-containing L31 paralog; is able to displace it to varying extents, even under zinc-replete conditions. (82 aa)
yugIPutative RNA degradation protein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (130 aa)
yukFPutative transcriptional regulator; Mediates ald expression in response to alanine availability and is important for normal sporulation in B.subtilis. Belongs to the CdaR family. (422 aa)
sufAChaperone involved in Fe-S cluster assembly; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; factor. (120 aa)
lipALipoyl synthase (lipoic acid synthetase); Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives; Belongs to the radical SAM superfamily. Lipoyl synthase family. (298 aa)
yusFPutative ribonuclease; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (146 aa)
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (127 aa)
sigOAlternative sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Together with its coactivator RsoA, positively regulates the expression of at least three operons, including oxdC-yvrL, sigO-rsoA and yvrJ. Required for the acid stress-dependent induction of the oxalate decarboxylase oxdC. (176 aa)
smpBtmRNA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches t [...] (156 aa)
sigLRNA polymerase sigma-54 factor (sigma-L); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of the levanase operon. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for receipt of the melting signal from the remotely bound activator protein LevR for the expression of the levanase operon. (436 aa)
hisZhistidyl-tRNA synthetase-like component of ATP phophoribosyltransferase; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine (By similarity). (391 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (366 aa)
tsaCtRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Catalyzes the conversion of L-threonine, HCO(3)(-)/CO(2) and ATP to give threonylcarbamoyl-AMP (TC-AMP) as the acyladenylate intermediate, with the release of diphosphate. Is also able to catalyze the reverse reaction in vitro, i.e. the formation of ATP from TC-AMP and PPi; Belongs to the SUA5 family. (346 aa)
prfAPeptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (356 aa)
rpmEARibosomal protein L31; Binds the 23S rRNA. (66 aa)
rhoTranscriptional terminator Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (427 aa)
rpoERNA polymerase (delta subunit); Participates in both the initiation and recycling phases of transcription. In the presence of the delta subunit, RNAP displays an increased specificity of transcription, a decreased affinity for nucleic acids, and an increased efficiency of RNA synthesis because of enhanced recycling. May function in sigma factor switching. It displaces RNA bound to RNA polymerase in a binary complex; Belongs to the RpoE family. (173 aa)
argSarginyl-tRNA synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (556 aa)
thrZthreonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr); Belongs to the class-II aminoacyl-tRNA synthetase family. (638 aa)
lipLOctanoyl-[GcvH]:protein N-octanoyltransferase; Catalyzes the amidotransfer (transamidation) of the octanoyl moiety from octanoyl-GcvH to the lipoyl domain of the E2 subunit of lipoate-dependent enzymes. (281 aa)
spsDPutative TDP-glycosamine N-acetyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (289 aa)
ywbDPutative AdoMet-dependent methyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (396 aa)
tyrZtyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (413 aa)
sigYRNA polymerase ECF (extracytoplasmic function)-type sigma factor (sigma-Y); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Positively regulates the expression of the sigY-yxlCDEFG operon upon nitrogen starvation. Also positively regulates ybgB. (178 aa)
yydAConserved hypothetical protein; Specifically methylates the pseudouridine at position 1915 (m3Psi1915) in 23S rRNA; Belongs to the RNA methyltransferase RlmH family. (159 aa)
rplIRibosomal protein L9; Binds to the 23S rRNA. (149 aa)
yyaKPutative integral inner membrane protein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pm: putative membrane component. (299 aa)
rpsRRibosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit. (79 aa)
rpsFRibosomal protein S6 (BS9); Binds together with S18 to 16S ribosomal RNA. (95 aa)
rsmG7-methylguanosine methyltransferase (16S rRNA, nucleotide G527); Specifically methylates the N7 position of guanine in position 535 of 16S rRNA. (239 aa)
trmFtRNA uridine 5-carboxymethylaminomethyl modification enzyme; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family. (628 aa)
mnmEtRNA modification GTPase and tRNA-U34 5-formylation enzyme; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34. (459 aa)
rnpAProtein component of ribonuclease P (RNase P) (substrate specificity); RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. (116 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (16%) [HD]