STRINGSTRING
cysI cysI ytkP ytkP mccA mccA mccB mccB cysH cysH metC metC metI metI yitB yitB cysE cysE cysK cysK yxeP yxeP cysJ cysJ thrC thrC yxeK yxeK yxeL yxeL
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cysISulfite reductase (hemoprotein beta-subunit); Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate (Probable); Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (571 aa)
ytkPPutative cysteine synthase-like protein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (311 aa)
mccACystathionine beta-synthase for the reverse transsulfuration pathway; Catalyzes the conversion of O-acetylserine and homocysteine to cystathionine. (307 aa)
mccBCystathionine gamma-lyase and homocysteine gamma-lyase for reverse transsulfuration pathway; Catalyzes the conversion of cystathionine to cysteine, and homocysteine to sulfide. (379 aa)
cysH(phospho)adenosine phosphosulfate reductase; Reduction of activated sulfate into sulfite. (233 aa)
metCCystathionine beta-lyase; Catalyzes the transformation of cystathionine into homocysteine. Also exhibits cysteine desulfhydrase activity in vitro, producing sulfide from cysteine; Belongs to the trans-sulfuration enzymes family. (390 aa)
metICystathionine gamma-synthase and O-acetylhomoserine thiolyase; Catalyzes the formation of L-cystathionine from O-acetyl-L- homoserine and L-cysteine. Cannot use O-succinyl-L-homoserine as substrate. Also exhibits O-acetylhomoserine thiolyase activity, catalyzing the synthesis of L-homocysteine from O-acetyl-L-homoserine and sulfide. (373 aa)
yitBPutative phospho-adenylylsulfate sulfotransferase; Reduction of activated sulfate into sulfite; Belongs to the PAPS reductase family. CysH subfamily. (236 aa)
cysESerine acetyltransferase; Catalyzes the acetylation of serine by acetyl-CoA to produce O-acetylserine (OAS). (217 aa)
cysKCysteine synthase; Catalyzes the conversion of O-acetylserine to cysteine. Also acts as a sensor of cysteine availability in the signal transduction pathway modulating CymR activity. When cysteine is present, the pool of O-acetylserine (OAS) is low, which leads to the formation of a CymR- CysK complex and transcriptional repression of the CymR regulon occurs. In the absence of cysteine, the OAS pool is high and the CymR-CysK complex is mostly dissociated, leading to a faster dissociation of CymR from its DNA targets and the lifting of CymR-dependent repression. (308 aa)
yxePPutative amidohydrolase; Probably catalyzes the deacetylation of N-acetylcysteine (NAC) to acetate and cysteine. Is involved in a S-(2-succino)cysteine (2SC) degradation pathway that allows B.subtilis to grow on 2SC as a sole sulfur source, via its metabolization to cysteine. Belongs to the peptidase M20 family. (380 aa)
cysJSulfite reductase (flavoprotein alpha-subunit); Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component (Probable). (605 aa)
thrCThreonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (352 aa)
yxeKPutative monooxygenase; Probably catalyzes the oxygenation of the 2-position of the succinyl moiety of N-acetyl-S-(2-succino)cysteine, causing a spontaneous elimination reaction of the resulting hemithioketal that generates oxaloacetate and N-acetylcysteine (NAC). Is involved in a S- (2-succino)cysteine (2SC) degradation pathway that allows B.subtilis to grow on 2SC as a sole sulfur source, via its metabolization to cysteine; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. (441 aa)
yxeLPutative acetyltransferase; Catalyzes the N-acetylation of S-(2-succino)cysteine. Is involved in a S-(2-succino)cysteine (2SC) degradation pathway that allows B.subtilis to grow on 2SC as a sole sulfur source, via its metabolization to cysteine. Moreover, 2SC is a toxic compound in B.subtilis at high exogenous concentrations, and this enzyme relieves 2SC toxicity via N-acetylation; Belongs to the acetyltransferase family. (165 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (12%) [HD]