STRINGSTRING
ctaD ctaD ctaE ctaE qcrB qcrB sdhB sdhB ythA ythA mrpD mrpD cydA cydA cydB cydB yumB yumB narI narI qoxD qoxD qoxC qoxC qoxB qoxB qoxA qoxA ndhF ndhF ctaC ctaC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ctaDCytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. (622 aa)
ctaECytochrome caa3 oxidase (subunit III); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the cytochrome c oxidase subunit 3 family. (207 aa)
qcrBMenaquinol:cytochrome c oxidoreductase (cytochrome b subunit); Component of the menaquinol-cytochrome c reductase complex. (224 aa)
sdhBSuccinate dehydrogenase (iron-sulfur protein); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (253 aa)
ythAPutative cytochrome bd menaquinol oxidase subunit I; May have a role in sporulation. Can compensate for the loss of cytochrome aa3; Belongs to the cytochrome ubiquinol oxidase subunit 1 family. (443 aa)
mrpDProton transporter component of Na+/H+ antiporter; Mrp complex is a Na(+)/H(+) antiporter that is considered to be the major Na(+) excretion system in B.subtilis. Has a major role in Na(+) resistance and a minor role in Na(+)- and K(+)-dependent pH homeostasis as compared to TetB. MrpA may be the actual Na(+)/H(+) antiporter, although the six other Mrp proteins are all required for Na(+)/H(+) antiport activity and Na(+) resistance. MrpA is required for initiation of sporulation when external Na(+) concentration increases. Also transports Li(+) but not K(+), Ca(2+) or Mg(2+). Belongs to [...] (493 aa)
cydACytochrome bb' ubiquinol oxidase (subunit I); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the cytochrome ubiquinol oxidase subunit 1 family. (468 aa)
cydBCytochrome bb' ubiquinol oxidase (subunit II); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (338 aa)
yumBPutative NAD-disulfide oxidoreductase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (406 aa)
narINitrate reductase (gamma subunit); The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (223 aa)
qoxDCytochrome aa3-600 quinol oxidase (subunit IV); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). (124 aa)
qoxCCytochrome aa3-600 quinol oxidase (subunit III); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). (204 aa)
qoxBCytochrome aa3-600 quinol oxidase (subunit I); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). (649 aa)
qoxACytochrome aa3-600 quinol oxidase (subunit II); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth. Subunit II transfers the electrons from a quinol to the binuclear center of the catalytic subunit I (By similarity). (321 aa)
ndhFPutative NADH dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the complex I subunit 5 family. (505 aa)
ctaCCytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (356 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (14%) [HD]