| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| ctaC | ctaD | BSU14890 | BSU14900 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | 0.999 |
| ctaC | ctaE | BSU14890 | BSU14910 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome caa3 oxidase (subunit III); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the cytochrome c oxidase subunit 3 family. | 0.999 |
| ctaC | cydA | BSU14890 | BSU38760 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome bb' ubiquinol oxidase (subunit I); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the cytochrome ubiquinol oxidase subunit 1 family. | 0.551 |
| ctaC | narI | BSU14890 | BSU37250 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Nitrate reductase (gamma subunit); The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. | 0.402 |
| ctaC | qcrB | BSU14890 | BSU22550 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Menaquinol:cytochrome c oxidoreductase (cytochrome b subunit); Component of the menaquinol-cytochrome c reductase complex. | 0.999 |
| ctaC | qoxA | BSU14890 | BSU38170 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome aa3-600 quinol oxidase (subunit II); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth. Subunit II transfers the electrons from a quinol to the binuclear center of the catalytic subunit I (By similarity). | 0.984 |
| ctaC | qoxB | BSU14890 | BSU38160 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome aa3-600 quinol oxidase (subunit I); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). | 0.999 |
| ctaC | qoxC | BSU14890 | BSU38150 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome aa3-600 quinol oxidase (subunit III); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). | 0.999 |
| ctaC | qoxD | BSU14890 | BSU38140 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome aa3-600 quinol oxidase (subunit IV); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). | 0.994 |
| ctaC | sdhB | BSU14890 | BSU28430 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Succinate dehydrogenase (iron-sulfur protein); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | 0.999 |
| ctaC | yumB | BSU14890 | BSU32100 | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Putative NAD-disulfide oxidoreductase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. | 0.669 |
| ctaD | ctaC | BSU14900 | BSU14890 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.999 |
| ctaD | ctaE | BSU14900 | BSU14910 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Cytochrome caa3 oxidase (subunit III); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the cytochrome c oxidase subunit 3 family. | 0.999 |
| ctaD | cydA | BSU14900 | BSU38760 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Cytochrome bb' ubiquinol oxidase (subunit I); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the cytochrome ubiquinol oxidase subunit 1 family. | 0.602 |
| ctaD | qcrB | BSU14900 | BSU22550 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Menaquinol:cytochrome c oxidoreductase (cytochrome b subunit); Component of the menaquinol-cytochrome c reductase complex. | 0.997 |
| ctaD | qoxA | BSU14900 | BSU38170 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Cytochrome aa3-600 quinol oxidase (subunit II); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth. Subunit II transfers the electrons from a quinol to the binuclear center of the catalytic subunit I (By similarity). | 0.998 |
| ctaD | qoxB | BSU14900 | BSU38160 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Cytochrome aa3-600 quinol oxidase (subunit I); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). | 0.908 |
| ctaD | qoxC | BSU14900 | BSU38150 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Cytochrome aa3-600 quinol oxidase (subunit III); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). | 0.999 |
| ctaD | qoxD | BSU14900 | BSU38140 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Cytochrome aa3-600 quinol oxidase (subunit IV); Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Major component for energy conversion during vegetative growth (By similarity). | 0.988 |
| ctaD | sdhB | BSU14900 | BSU28430 | Cytochrome caa3 oxidase (subunit I); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | Succinate dehydrogenase (iron-sulfur protein); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | 0.794 |