STRINGSTRING
ald ald pdxT pdxT serS serS yabJ yabJ cysK cysK pabB pabB pabA pabA cysE cysE glmS glmS ilvE ilvE ybgG ybgG glsA glsA ansZ ansZ putB putB putC putC ycxD ycxD yczE yczE yclM yclM alrA alrA ydfD ydfD guaA guaA purQ purQ purF purF yerD yerD yerI yerI dat dat serC serC asnO asnO yisV yisV yitB yitB samT samT argC argC argJ argJ argB argB argD argD carA carA carB carB argF argF metI metI metC metC proG proG ykgA ykgA proB proB proA proA metE metE mtnA mtnA mtnK mtnK mtnE mtnE mtnW mtnW mtnX mtnX mtnB mtnB mtnD mtnD dapX dapX dapH dapH dapL dapL glsB glsB pyrAA pyrAA pyrAB pyrAB cysH cysH asd asd dapG dapG dapA dapA tdh tdh glnA glnA alrB alrB yngE yngE yngG yngG gltB gltB gltA gltA gltC gltC proJ proJ proH proH yoaD yoaD odhB odhB kamA kamA ilvA ilvA dfrA dfrA ilvD ilvD metA metA panD panD dapB dapB tyrA tyrA trpA trpA trpB trpB trpF trpF trpD trpD trpE trpE gudB gudB serA serA lysA lysA ansB ansB dsdA dsdA proI proI yqjN yqjN bcd bcd ahrC ahrC folD folD gcvPB gcvPB gcvPA gcvPA gcvT gcvT comER comER gltR gltR mccB mccB mccA mccA mtnN mtnN dtd dtd nadA nadA nadB nadB pheA pheA leuD leuD leuC leuC leuB leuB leuA leuA ilvC ilvC ilvH ilvH ilvB ilvB lysC lysC ysaA ysaA argH argH argG argG ytkP ytkP asnB asnB patB patB dapF dapF thrB thrB thrC thrC hom hom pucG pucG sufS sufS gcvH gcvH putM putM cysI cysI cysJ cysJ hisA hisA hisH hisH alsS alsS glyA glyA pyrG pyrG speB speB rocC rocC rocB rocB rocA rocA rocG rocG ilvK ilvK yxjH yxjH yxjG yxjG hutH hutH hutU hutU hutI hutI hutG hutG yxeP yxeP yxeL yxeL yxeK yxeK iolD iolD mmsA mmsA asnH asnH argI argI rocE rocE rocD rocD rocR rocR
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
aldL-alanine dehydrogenase; Catalyzes the reversible oxidative deamination of L-alanine to pyruvate. This enzyme is a key factor in the assimilation of L- alanine as an energy source through the tricarboxylic acid cycle during sporulation. (378 aa)
pdxTGlutamine amidotransferase for pyridoxal phosphate synthesis; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS. (196 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (425 aa)
yabJAminoacrylate/iminopropionate hydrolase/deaminase; Accelerates the release of ammonia from reactive enamine/imine intermediates of the PLP-dependent threonine dehydratase (IlvA) in the low water environment of the cell. It catalyzes the deamination of enamine/imine intermediates to yield 2-ketobutyrate and ammonia. It is required for the detoxification of reactive intermediates of IlvA due to their highly nucleophilic abilities. Involved in the isoleucine biosynthesis. May have a role in the purine metabolism; Belongs to the RutC family. (125 aa)
cysKCysteine synthase; Catalyzes the conversion of O-acetylserine to cysteine. Also acts as a sensor of cysteine availability in the signal transduction pathway modulating CymR activity. When cysteine is present, the pool of O-acetylserine (OAS) is low, which leads to the formation of a CymR- CysK complex and transcriptional repression of the CymR regulon occurs. In the absence of cysteine, the OAS pool is high and the CymR-CysK complex is mostly dissociated, leading to a faster dissociation of CymR from its DNA targets and the lifting of CymR-dependent repression. (308 aa)
pabB4-amino-4-deoxychorismate synthase (para-aminobenzoate synthase); Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. (470 aa)
pabA4-amino-4-deoxychorismate synthase; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB. Also involved in the biosynthesis of anthranilate. (194 aa)
cysESerine acetyltransferase; Catalyzes the acetylation of serine by acetyl-CoA to produce O-acetylserine (OAS). (217 aa)
glmSL-glutamine-D-fructose-6-phosphate amidotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (600 aa)
ilvEKetomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (356 aa)
ybgGHomocysteine methylase using (R,S)AdoMet; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme. (315 aa)
glsAGlutaminase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (327 aa)
ansZL-asparaginase 2 (putative lipoprotein); Catalyzes the conversion of L-asparagine to L-aspartate and ammonium. (375 aa)
putBProline oxidase; Converts proline to delta-1-pyrroline-5-carboxylate. Important for the use of proline as a sole carbon and energy source or a sole nitrogen source. (303 aa)
putC1-pyrroline-5-carboxylate dehydrogenase; Important for the use of proline as a sole carbon and energy source or a sole nitrogen source. (515 aa)
ycxDPutative PLP-dependent transcriptional regulator; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative regulator. (444 aa)
yczEN-terminal part of 4'-phosphopantetheinyl transferase (Surfactin synthetase-activating enzyme); Evidence 7: Gene remnant; Product type e: enzyme. (215 aa)
yclMAspartate kinase III; Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. (454 aa)
alrAD-alanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family. (389 aa)
ydfDPutative PLP-dependent transcriptional regulator; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative regulator. (482 aa)
guaAGMP synthetase; Catalyzes the synthesis of GMP from XMP. (513 aa)
purQPhosphoribosylformylglycinamidine synthetase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (227 aa)
purFGlutamine phosphoribosylpyrophosphate amidotransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (476 aa)
yerDPutative flavoenzyme; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (525 aa)
yerIPutative kinase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the pseudomonas-type ThrB family. (336 aa)
datD-alanine aminotransferase; Acts on the D-isomers of alanine, leucine, aspartate, glutamate, aminobutyrate, norvaline and asparagine. The enzyme transfers an amino group from a substrate D-amino acid to the pyridoxal phosphate cofactor to form pyridoxamine and an alpha-keto acid in the first half-reaction. The second half-reaction is the reverse of the first, transferring the amino group from the pyridoxamine to a second alpha-keto acid to form the product D-amino acid via a ping-pong mechanism. This is an important process in the formation of D-alanine and D-glutamate, which are essen [...] (282 aa)
serCPhosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (359 aa)
asnOAsparagine synthetase; Asparagine synthetase involved in sporulation. (614 aa)
yisVPutative PLP-dependent transcriptional regulator; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative regulator. (484 aa)
yitBPutative phospho-adenylylsulfate sulfotransferase; Reduction of activated sulfate into sulfite; Belongs to the PAPS reductase family. CysH subfamily. (236 aa)
samTBifunctional homocysteine S-methyltransferase/5,10-methylenetetrahydrofolate reductase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme. (612 aa)
argCN-acetylglutamate gamma-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (345 aa)
argJOrnithine acetyltransferase; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis: the synthesis of N-acetylglutamate from glutamate and acetyl-CoA as the acetyl donor, and of ornithine by transacetylation between N(2)-acetylornithine and glutamate. (406 aa)
argBN-acetylglutamate 5-phosphotransferase (acetylglutamate kinase); Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (258 aa)
argDN-acetylornithine aminotransferase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (385 aa)
carAArginine-specific carbamoyl-phosphate synthetase (small subunit); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (353 aa)
carBArginine-specific carbamoyl-phosphate synthetase (large subunit); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the CarB family. (1030 aa)
argFOrnithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. OTCase family. (319 aa)
metICystathionine gamma-synthase and O-acetylhomoserine thiolyase; Catalyzes the formation of L-cystathionine from O-acetyl-L- homoserine and L-cysteine. Cannot use O-succinyl-L-homoserine as substrate. Also exhibits O-acetylhomoserine thiolyase activity, catalyzing the synthesis of L-homocysteine from O-acetyl-L-homoserine and sulfide. (373 aa)
metCCystathionine beta-lyase; Catalyzes the transformation of cystathionine into homocysteine. Also exhibits cysteine desulfhydrase activity in vitro, producing sulfide from cysteine; Belongs to the trans-sulfuration enzymes family. (390 aa)
proGRedundant pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (272 aa)
ykgAPutative aminohydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the DDAH family. (286 aa)
proBGlutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (365 aa)
proAGamma-glutamyl phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (415 aa)
metECobalamin-independent methionine synthase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. (762 aa)
mtnAMethylthioribose-1-phosphate isomerase (methionine salvage pathway); Catalyzes the interconversion of methylthioribose-1-phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1-P). (353 aa)
mtnKMethylthioribose kinase (methionine salvage pathway); Catalyzes the phosphorylation of methylthioribose into methylthioribose-1-phosphate. (397 aa)
mtnEMethionine-glutamine aminotransferase; Catalyzes the formation of methionine from 2-keto-4- methylthiobutyrate (KMTB). (398 aa)
mtnW2,3-diketo-5-methylthiopentyl-1-phosphate enolase (DK-MTP-1-P enolase); Catalyzes the enolization of 2,3-diketo-5-methylthiopentyl-1- phosphate (DK-MTP-1-P) into 2-hydroxy-3-keto-5-methylthiopentenyl-1- phosphate (HK-MTPenyl-1-P); Belongs to the RuBisCO large chain family. Type IV subfamily. (405 aa)
mtnX2-hydroxy-3-keto-5-methylthiopentenyl-1- phosphatephosphatase (HK-MTPenyl-1-P phosphatase); Dephosphorylates 2-hydroxy-3-keto-5-methylthiopentenyl-1- phosphate (HK-MTPenyl-1-P) yielding 1,2-dihydroxy-3-keto-5- methylthiopentene (DHK-MTPene). (235 aa)
mtnBMethylthioribulose-1-phosphate dehydratase (MTRu-1-P dehydratase); Catalyzes the dehydration of methylthioribulose-1-phosphate (MTRu-1-P) into 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P). Belongs to the aldolase class II family. MtnB subfamily. (209 aa)
mtnDAcireductone dioxygenase (Ni2+ or Fe2+-requiring); Catalyzes 2 different reactions between oxygene and the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene) depending upon the metal bound in the active site. Fe-containing acireductone dioxygenase (Fe-ARD) produces formate and 2-keto-4- methylthiobutyrate (KMTB), the alpha-ketoacid precursor of methionine in the methionine recycle pathway. Ni-containing acireductone dioxygenase (Ni-ARD) produces methylthiopropionate, carbon monoxide and formate, and does not lie on the methionine recycle pathway. (178 aa)
dapXN-acetyl-L,L-diaminopimelate aminotransferase; Essential for murein biosynthesis. Probably catalyzes the conversion of L-2-acetamido-6-oxopimelate to N-acetyl-LL- 2,6-diaminopimelate (Probable); Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (393 aa)
dapHTetrahydrodipicolinate N-acetyltransferase; Catalyzes the transfer of an acetyl group from acetyl-CoA to tetrahydrodipicolinate. (236 aa)
dapLN-acetyl-diaminopimelate deacetylase; Catalyzes the conversion of N-acetyl-diaminopimelate to diaminopimelate and acetate. (374 aa)
glsBGlutaminase; Evidence 2b: Function of strongly homologous gene; Product type e: enzyme. (309 aa)
pyrAAPyrimidine-specific carbamoyl-phosphate synthetase (small subunit, glutaminase subunit); Evidence 2b: Function of strongly homologous gene; enzyme. (364 aa)
pyrABPyrimidine-specific carbamoyl-phosphate synthetase (large subunit); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the CarB family. (1071 aa)
cysH(phospho)adenosine phosphosulfate reductase; Reduction of activated sulfate into sulfite. (233 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (346 aa)
dapGAspartokinase I (alpha and beta subunits); Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. Belongs to the aspartokinase family. (404 aa)
dapADihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (290 aa)
tdhThreonine 3-dehydrogenase; Catalyzes the NAD(+)-dependent oxidation of L-threonine to 2- amino-3-ketobutyrate; Belongs to the zinc-containing alcohol dehydrogenase family. (347 aa)
glnAGlutamine synthetase; Glutamine synthetase (GS) is an unusual multitasking protein that functions as an enzyme, a transcription coregulator, and a chaperone in ammonium assimilation and in the regulation of genes involved in nitrogen metabolism. It catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. Feedback-inhibited GlnA interacts with and regulates the activity of the transcriptional regulator TnrA. During nitrogen limitation, TnrA is in its DNA- binding active state and turns on the transcription of genes required for nitrogen assimilation. Under condi [...] (444 aa)
alrBAlanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family. (394 aa)
yngEPutative methylcrotonoyl-CoA carboxylase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the AccD/PCCB family. (511 aa)
yngGPutative hydroxymethylglutaryl-CoA lyase; Involved in the catabolism of branched amino acids such as leucine; Belongs to the HMG-CoA lyase family. (299 aa)
gltBGlutamate synthase (small subunit); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (493 aa)
gltAGlutamate synthase (large subunit); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the glutamate synthase family. (1520 aa)
gltCTranscriptional regulator (LysR family); Positive regulator of glutamate biosynthesis (gltAB genes). Negatively regulates its own expression. (300 aa)
proJGlutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (371 aa)
proHPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (297 aa)
yoaDPutative 2-hydroxyacid dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (344 aa)
odhB2-oxoglutarate dehydrogenase complex (dihydrolipoamide transsuccinylase, E2 subunit); E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (417 aa)
kamALysine 2,3-aminomutase; Catalyzes the interconversion of L-alpha-lysine and L-beta- lysine; Belongs to the radical SAM superfamily. KamA family. (471 aa)
ilvAThreonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). (422 aa)
dfrADihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (By similarity). (168 aa)
ilvDDihydroxy-acid dehydratase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the IlvD/Edd family. (558 aa)
metAPutative homoserine O-acetyltransferase; Transfers an acetyl group from acetyl-CoA to L-homoserine, forming acetyl-L-homoserine; Belongs to the MetA family. (301 aa)
panDAspartate 1-decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine. (127 aa)
dapB(4S)-4-hydroxy-2,3,4, 5-tetrahydro-(2S)-dipicolinic acid (HTPA) dehydratase reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate. (267 aa)
tyrAPrephenate dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the prephenate/arogenate dehydrogenase family. (371 aa)
trpATryptophan synthase (alpha subunit); The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate; Belongs to the TrpA family. (267 aa)
trpBTryptophan synthase (beta subunit); The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (400 aa)
trpFPhosphoribosyl anthranilate isomerase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the TrpF family. (215 aa)
trpDIndole-3-glycerol phosphate synthase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (338 aa)
trpEAnthranilate synthase; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentrations of am [...] (515 aa)
gudBCryptic glutamate dehydrogenase; GudB seems to be intrinsically inactive, however spontaneous mutations removing a 9-bp direct repeat within the wild-type gudB sequence activated the GudB protein and allowed more-efficient utilization of amino acids of the glutamate family. This insertion presumably causes severe destabilization of the fold of the protein, leading to an inactive enzyme that is very quickly degraded. The cryptic GudB serves as a buffer that may compensate for mutations in the rocG gene and that can also be decryptified for the utilization of glutamate as a single carbon [...] (427 aa)
serA3-phosphoglycerate dehydrogenase; Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L- serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate. (525 aa)
lysADiaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (439 aa)
ansBL-aspartase (aspartate ammonia lyase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-II fumarase/aspartase family. Aspartase subfamily. (475 aa)
dsdAD-serine ammonia-lyase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the serine/threonine dehydratase family. DsdA subfamily. (448 aa)
proIPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (278 aa)
yqjNPutative N-deacylase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; To B.subtilis RocB. (547 aa)
bcdBranched-chain amino acid dehydrogenase; Catalyzes the reversible deamination of L-leucine to 4- methyl-2-oxopentanoate. (364 aa)
ahrCTranscriptional regulator; Represses the synthesis of biosynthetic enzymes and activates the arginine catabolism. Controls the transcription of the two operons rocABC and rocDEF. (149 aa)
folDMethylenetetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (283 aa)
gcvPBGlycine decarboxylase (subunit 2) (glycine cleavage system protein P); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (By similarity); Belongs to the GcvP family. C-terminal subunit subfamily. (488 aa)
gcvPAGlycine decarboxylase (subunit 1) (glycine cleavage system protein P); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (By similarity). (448 aa)
gcvTAminomethyltransferase (glycine cleavage system protein T); The glycine cleavage system catalyzes the degradation of glycine. (362 aa)
comERPutative pyrroline-5'-carboxylate reductase; Dispensable for transformability. Not known if it can act as a pyrroline-5-carboxylate reductase. (273 aa)
gltRTranscriptional regulator (LysR family); Positive regulator of glutamate biosynthesis (gltAB genes). Negatively regulates its own expression; Belongs to the LysR transcriptional regulatory family. (296 aa)
mccBCystathionine gamma-lyase and homocysteine gamma-lyase for reverse transsulfuration pathway; Catalyzes the conversion of cystathionine to cysteine, and homocysteine to sulfide. (379 aa)
mccACystathionine beta-synthase for the reverse transsulfuration pathway; Catalyzes the conversion of O-acetylserine and homocysteine to cystathionine. (307 aa)
mtnNMethylthioadenosine / S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Belongs to the PNP/UDP phosphorylase family. MtnN subfamily. (231 aa)
dtdD-Tyr-tRNATyr deacylase; A non-functional D-aminoacyl-tRNA deacylase. (132 aa)
nadAQuinolinate synthetase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. (368 aa)
nadBL-aspartate oxidase; Catalyzes the oxidation of L-aspartate to iminoaspartate. (531 aa)
pheAPrephenate dehydratase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (285 aa)
leuD3-isopropylmalate dehydratase (small subunit); Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (199 aa)
leuC3-isopropylmalate dehydratase (large subunit); Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate; Belongs to the aconitase/IPM isomerase family. LeuC type 1 subfamily. (472 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 1 subfamily. (365 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. (518 aa)
ilvCAcetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (342 aa)
ilvHAcetolactate synthase (acetohydroxy-acid synthase) (small subunit); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the acetolactate synthase small subunit family. (172 aa)
ilvBAcetolactate synthase (acetohydroxy-acid synthase) (large subunit); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (574 aa)
lysCAspartokinase II alpha subunit (aa 1->408) and beta subunit (aa 246->408); Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. (408 aa)
ysaAPutative phosphatase; Catalyzes the last step of the phosphorylated serine biosynthetic pathway, i.e. dephosphorylation of O-phospho-L-serine to form L-serine. To a lesser extent, is also able to dephosphorylate phosphothreonine, phosphoethanolamine, and histidinol phosphate in vitro; Belongs to the HAD-like hydrolase superfamily. (260 aa)
argHArgininosuccinate lyase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (461 aa)
argGArgininosuccinate synthase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (403 aa)
ytkPPutative cysteine synthase-like protein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (311 aa)
asnBAsparagine synthetase; Main asparagine synthetase in vegetative cells. (632 aa)
patBPromiscuous cystathionine beta-lyase / cysteine desulfhydrase; Catalyzes the transformation of cystathionine to homocysteine. Also exhibits cysteine desulfhydrase activity in vitro, producing sulfide from cysteine; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. MalY/PatB cystathionine beta-lyase subfamily. (387 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (284 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa)
thrCThreonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (352 aa)
homHomoserine dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (433 aa)
pucGVitamin B6-dependent (S)-ureidoglycine glyoxylate aminotransferase; Catalyzes the transamination between an unstable intermediate ((S)-ureidoglycine) and the end product of purine catabolism (glyoxylate) to yield oxalurate and glycine. Glyoxylate is the preferred substrate, but other amino-group acceptors can be used. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. (416 aa)
sufSCysteine desulfurase; Enzyme able to deliver sulfur to partners involved in Fe-S cluster assembly. Catalyzes the removal of elemental sulfur atoms from L-cysteine to produce L-alanine. Activity is stimulated 40- to 100-fold by SufU, which acts as a second substrate for this enzyme following release of Ala, and generating SufU.S. A mixture of SufS, SufU, Fra and L-cysteine is able to reconstitute Fe-S clusters on apo-aconitase (citB), reconstituting aconitase activity. (406 aa)
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (127 aa)
putMProline dehydrogenase 1; Converts proline to delta-1-pyrroline-5-carboxylate. (302 aa)
cysISulfite reductase (hemoprotein beta-subunit); Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate (Probable); Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (571 aa)
cysJSulfite reductase (flavoprotein alpha-subunit); Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component (Probable). (605 aa)
hisAPhosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (245 aa)
hisHAmidotransferase (glutaminase); IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF (By similarity). (212 aa)
alsSAlpha-acetolactate synthase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (570 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity); Belongs to the SHMT family. (415 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (535 aa)
speBAgmatinase; Catalyzes the formation of putrescine from agmatine; Belongs to the arginase family. Agmatinase subfamily. (290 aa)
rocCArginine/ornithine permease; Putative transport protein involved in arginine degradative pathway. Probably transports arginine or ornithine. (470 aa)
rocBPutative N-deacylase involved in arginine and ornithine utilization; Involved in arginine degradative pathway. (566 aa)
rocADelta-1-pyrroline-5 carboxylate dehydrogenase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (515 aa)
rocGGlutamate dehydrogenase; Devoted to catabolic function of glutamate (and other amino acids of the glutamate family) utilization as sole nitrogen source. It is not involved in anabolic function of glutamate biosynthesis since B.subtilis possesses only one route of glutamate biosynthesis from ammonia, catalyzed by glutamate synthase. RocG is unable to utilize glutamate or glutamine as sole carbon source and to synthesize glutamate, but it is involved in the utilization of arginine, and proline as carbon or nitrogen source. The catabolic RocG is essential for controlling gltAB expression [...] (424 aa)
ilvKBranched-chain amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (363 aa)
yxjHPutative methyl-tetrahydrofolate methyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; To B.subtilis YxjG. (377 aa)
yxjGPutative methyltetrahydrofolate methyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; To B.subtilis YxjH. (378 aa)
hutHHistidine ammonia-lyase (histidase); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (508 aa)
hutUUrocanase; Catalyzes the conversion of urocanate to 4-imidazolone-5- propionate; Belongs to the urocanase family. (552 aa)
hutIImidazolone-5-propionate hydrolase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (421 aa)
hutGFormiminoglutamate hydrolase; Catalyzes the conversion of N-formimidoyl-L-glutamate to L- glutamate and formamide. (319 aa)
yxePPutative amidohydrolase; Probably catalyzes the deacetylation of N-acetylcysteine (NAC) to acetate and cysteine. Is involved in a S-(2-succino)cysteine (2SC) degradation pathway that allows B.subtilis to grow on 2SC as a sole sulfur source, via its metabolization to cysteine. Belongs to the peptidase M20 family. (380 aa)
yxeLPutative acetyltransferase; Catalyzes the N-acetylation of S-(2-succino)cysteine. Is involved in a S-(2-succino)cysteine (2SC) degradation pathway that allows B.subtilis to grow on 2SC as a sole sulfur source, via its metabolization to cysteine. Moreover, 2SC is a toxic compound in B.subtilis at high exogenous concentrations, and this enzyme relieves 2SC toxicity via N-acetylation; Belongs to the acetyltransferase family. (165 aa)
yxeKPutative monooxygenase; Probably catalyzes the oxygenation of the 2-position of the succinyl moiety of N-acetyl-S-(2-succino)cysteine, causing a spontaneous elimination reaction of the resulting hemithioketal that generates oxaloacetate and N-acetylcysteine (NAC). Is involved in a S- (2-succino)cysteine (2SC) degradation pathway that allows B.subtilis to grow on 2SC as a sole sulfur source, via its metabolization to cysteine; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. (441 aa)
iolD3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase; Involved in the cleavage of the C1-C2 bond of 3D-(3,5/4)- trihydroxycyclohexane-1,2-dione (THcHDO) to yield 5-deoxy-glucuronate (5DG). (637 aa)
mmsAMethylmalonate-semialdehyde dehydrogenase; Catalyzes the oxidation of malonate semialdehyde (MSA) and methylmalonate semialdehyde (MMSA) into acetyl-CoA and propanoyl-CoA, respectively. (487 aa)
asnHAsparagine synthetase (glutamine-hydrolyzing); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the asparagine synthetase family. (747 aa)
argIArginase; Involved in the catabolism of arginine. Belongs to the arginase family. (296 aa)
rocEArginine/ornithine/gamma-aminobutyrate permease; Putative transport protein involved in arginine degradative pathway. Probably transports arginine or ornithine. (467 aa)
rocDOrnithine aminotransferase; Catalyzes the interconversion of ornithine to glutamate semialdehyde. Controls arginine catabolism. (401 aa)
rocRTranscriptional regulator (NtrC/NifA family); Positive regulator of arginine catabolism. Controls the transcription of the two operons rocABC and rocDEF and probably acts by binding to the corresponding upstream activating sequences. (461 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (18%) [HD]