node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
bioI | cypB | BSU30190 | BSU27160 | Cytochrome P450 for pimelic acid formation for biotin biosynthesis; Catalyzes the C-C bond cleavage of fatty acid linked to acyl carrier protein (ACP) to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain fatty acids with the greatest affinity for myristic acid; Belongs to the cytochrome P450 family. | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | 0.449 |
bioI | cypC | BSU30190 | BSU02100 | Cytochrome P450 for pimelic acid formation for biotin biosynthesis; Catalyzes the C-C bond cleavage of fatty acid linked to acyl carrier protein (ACP) to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain fatty acids with the greatest affinity for myristic acid; Belongs to the cytochrome P450 family. | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | 0.487 |
bioI | cypD | BSU30190 | BSU07250 | Cytochrome P450 for pimelic acid formation for biotin biosynthesis; Catalyzes the C-C bond cleavage of fatty acid linked to acyl carrier protein (ACP) to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain fatty acids with the greatest affinity for myristic acid; Belongs to the cytochrome P450 family. | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | 0.702 |
cypB | bioI | BSU27160 | BSU30190 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Cytochrome P450 for pimelic acid formation for biotin biosynthesis; Catalyzes the C-C bond cleavage of fatty acid linked to acyl carrier protein (ACP) to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain fatty acids with the greatest affinity for myristic acid; Belongs to the cytochrome P450 family. | 0.449 |
cypB | cypC | BSU27160 | BSU02100 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | 0.621 |
cypB | cypD | BSU27160 | BSU07250 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | 0.933 |
cypB | pksS | BSU27160 | BSU17230 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Cytochrome P450 of bacillaene metabolism; Involved in the metabolism of the antibiotic polyketide bacillaene which is involved in secondary metabolism. The substrate is dihydrobacillaene. | 0.674 |
cypB | yjiB | BSU27160 | BSU12210 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Putative monooxygenase (cytochrome P450); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. | 0.474 |
cypC | bioI | BSU02100 | BSU30190 | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | Cytochrome P450 for pimelic acid formation for biotin biosynthesis; Catalyzes the C-C bond cleavage of fatty acid linked to acyl carrier protein (ACP) to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain fatty acids with the greatest affinity for myristic acid; Belongs to the cytochrome P450 family. | 0.487 |
cypC | cypB | BSU02100 | BSU27160 | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | 0.621 |
cypC | cypD | BSU02100 | BSU07250 | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | 0.724 |
cypC | cypX | BSU02100 | BSU35060 | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | cyclo-L-leucyl-L-leucyl dipeptide oxidase; Involved in the biosynthesis of pulcherrimin, a red extracellular pigment. Catalyzes the oxidation of cyclo(L-Leu-L-Leu) (cLL) to yield pulcherriminic acid which forms pulcherrimin via a nonenzymic reaction with Fe(3+). Substrates with small alkyl groups (cAA, cLG, cLP) exhibit weaker binding to CYP134A1, but substrates with larger hydrophobic side chains bind in a similar regime to cLL. Belongs to the cytochrome P450 family. | 0.681 |
cypD | bioI | BSU07250 | BSU30190 | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | Cytochrome P450 for pimelic acid formation for biotin biosynthesis; Catalyzes the C-C bond cleavage of fatty acid linked to acyl carrier protein (ACP) to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain fatty acids with the greatest affinity for myristic acid; Belongs to the cytochrome P450 family. | 0.702 |
cypD | cypB | BSU07250 | BSU27160 | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | 0.933 |
cypD | cypC | BSU07250 | BSU02100 | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | 0.724 |
cypD | pksS | BSU07250 | BSU17230 | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | Cytochrome P450 of bacillaene metabolism; Involved in the metabolism of the antibiotic polyketide bacillaene which is involved in secondary metabolism. The substrate is dihydrobacillaene. | 0.592 |
cypX | cypC | BSU35060 | BSU02100 | cyclo-L-leucyl-L-leucyl dipeptide oxidase; Involved in the biosynthesis of pulcherrimin, a red extracellular pigment. Catalyzes the oxidation of cyclo(L-Leu-L-Leu) (cLL) to yield pulcherriminic acid which forms pulcherrimin via a nonenzymic reaction with Fe(3+). Substrates with small alkyl groups (cAA, cLG, cLP) exhibit weaker binding to CYP134A1, but substrates with larger hydrophobic side chains bind in a similar regime to cLL. Belongs to the cytochrome P450 family. | Fatty acid beta-hydroxylating cytochrome P450; Catalyzes the alpha- and beta-hydroxylation of myristic acid in the presence of hydrogen peroxide; Belongs to the cytochrome P450 family. | 0.681 |
pksS | cypB | BSU17230 | BSU27160 | Cytochrome P450 of bacillaene metabolism; Involved in the metabolism of the antibiotic polyketide bacillaene which is involved in secondary metabolism. The substrate is dihydrobacillaene. | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | 0.674 |
pksS | cypD | BSU17230 | BSU07250 | Cytochrome P450 of bacillaene metabolism; Involved in the metabolism of the antibiotic polyketide bacillaene which is involved in secondary metabolism. The substrate is dihydrobacillaene. | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | 0.592 |
yjiB | cypB | BSU12210 | BSU27160 | Putative monooxygenase (cytochrome P450); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | 0.474 |