STRINGSTRING
pksJ pksJ dhbE dhbE dhbF dhbF menE menE acsA acsA ytcI ytcI lcfA lcfA ppsA ppsA ppsB ppsB ppsC ppsC ppsD ppsD ppsE ppsE pksN pksN yngI yngI srfAA srfAA srfAB srfAB srfAC srfAC ydaB ydaB lcfB lcfB yhfT yhfT dltA dltA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
pksJPolyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. (5043 aa)
dhbE2,3-dihydroxybenzoate-AMP ligase; Involved in the biosynthesis of the catecholic siderophore bacillibactin. Catalyzes the activation of the carboxylate group of 2,3-dihydroxy-benzoate (DHB), via ATP-dependent PPi exchange reactions, to the acyladenylate. (539 aa)
dhbFSiderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin synthetase; Specifically adenylates threonine and glycine, and loads them onto their corresponding peptidyl carrier domains. (2378 aa)
menEO-succinylbenzoic acid-CoA ligase; Converts 2-succinylbenzoate (OSB) to 2-succinylbenzoyl-CoA (OSB-CoA); Belongs to the ATP-dependent AMP-binding enzyme family. MenE subfamily. (486 aa)
acsAacetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA (By similarity). Has a role in growth and sporulation on acetate. (572 aa)
ytcIPutative acyl-coenzyme A synthetase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the ATP-dependent AMP-binding enzyme family. (529 aa)
lcfALong chain acyl-CoA ligase (degradative); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (560 aa)
ppsAPlipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Glu and Orn as part of the biosynthesis of the lipopeptide antibiotic lipastatin. The Orn residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains; Belongs to the ATP-dependent AMP-binding enzyme family. (2561 aa)
ppsBPlipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Tyr and Thr as part of the biosynthesis of the lipopeptide antibiotic plipastatin. The Thr residue is further converted to the D-allo-isomer form. The activation sites for these amino acids consist of individual domains. Belongs to the ATP-dependent AMP-binding enzyme family. (2560 aa)
ppsCPlipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Glu and Ala/Val as part of the biosynthesis of the lipopeptide antibiotic plipastatin. The Ala/Val residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains. Belongs to the ATP-dependent AMP-binding enzyme family. (2555 aa)
ppsDPlipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Pro, Gln and Tyr as part of the biosynthesis of the lipopeptide antibiotic plipastatin. The Tyr residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains. Belongs to the ATP-dependent AMP-binding enzyme family. (3603 aa)
ppsEPlipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acid Ile as part of the biosynthesis of the lipopeptide antibiotic plipastatin. The activation sites for this amino acid consist of individual domains; Belongs to the ATP-dependent AMP-binding enzyme family. (1279 aa)
pksNPolyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. (5488 aa)
yngIPutative acetoacetyl-CoA synthetase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type e: enzyme; Belongs to the ATP-dependent AMP-binding enzyme family. (549 aa)
srfAASurfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. (3587 aa)
srfABSurfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. (3583 aa)
srfACSurfactin synthetase; Probably activates a leucine. (1275 aa)
ydaBPutative acyl-CoA ligase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the ATP-dependent AMP-binding enzyme family. (503 aa)
lcfBLong-chain fatty-acid-CoA ligase (degradative); Involved in the degradation of long-chain fatty acids; Belongs to the ATP-dependent AMP-binding enzyme family. (513 aa)
yhfTPutative long-chain fatty-acid-CoA ligase; May be involved in fatty acid metabolism; Belongs to the ATP-dependent AMP-binding enzyme family. (479 aa)
dltAD-alanine:D-alanyl-carrier protein ligase; Catalyzes the first step in the D-alanylation of lipoteichoic acid (LTA), the activation of D-alanine and its transfer onto the D- alanyl carrier protein (Dcp) DltC. In an ATP-dependent two-step reaction, forms a high energy D-alanyl-AMP intermediate, followed by transfer of the D-alanyl residue as a thiol ester to the phosphopantheinyl prosthetic group of the Dcp. D-alanylation of LTA plays an important role in modulating the properties of the cell wall in Gram-positive bacteria, influencing the net charge of the cell wall. Belongs to the ATP [...] (503 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (14%) [HD]