node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
htrA | secA | BSU12900 | BSU35300 | Membrane bound serine protease Do, quality control protease (heat-shock protein); Degrades abnormal exported proteins and responsible for the propeptide processing of a natural pro-protein and for the maturation of a native protein. It also plays a prominent role in stress (heat shock, ethanol, puromycin and NaCl) resistance during active exponential growth (Probable); Belongs to the peptidase S1C family. | Translocase binding subunit (ATPase); Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. | 0.750 |
secA | htrA | BSU35300 | BSU12900 | Translocase binding subunit (ATPase); Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. | Membrane bound serine protease Do, quality control protease (heat-shock protein); Degrades abnormal exported proteins and responsible for the propeptide processing of a natural pro-protein and for the maturation of a native protein. It also plays a prominent role in stress (heat shock, ethanol, puromycin and NaCl) resistance during active exponential growth (Probable); Belongs to the peptidase S1C family. | 0.750 |
secA | spoIIIE | BSU35300 | BSU16800 | Translocase binding subunit (ATPase); Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. | Spore DNA translocase; Plays an essential role during sporulation. Required for the translocation of the chromosomal DNA from mother cell into the forespore during polar septation, for the final steps of compartmentalization in the presence of trapped DNA, and for the final steps of engulfment. The N-terminus mediates localization to the division septum and is required for both septal membrane fusion and engulfment membrane fusion. May form DNA-conducting channels across the two lipid bilayers of the septum after cell division. The C-terminus functions as a DNA motor that exports DNA i [...] | 0.411 |
spoIIIE | secA | BSU16800 | BSU35300 | Spore DNA translocase; Plays an essential role during sporulation. Required for the translocation of the chromosomal DNA from mother cell into the forespore during polar septation, for the final steps of compartmentalization in the presence of trapped DNA, and for the final steps of engulfment. The N-terminus mediates localization to the division septum and is required for both septal membrane fusion and engulfment membrane fusion. May form DNA-conducting channels across the two lipid bilayers of the septum after cell division. The C-terminus functions as a DNA motor that exports DNA i [...] | Translocase binding subunit (ATPase); Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. | 0.411 |
sufB | sufD | BSU32670 | BSU32700 | FeS cluster formation protein; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | FeS assembly protein SufD; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | 0.992 |
sufB | sufU | BSU32670 | BSU32680 | FeS cluster formation protein; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | Iron-sulfur cluster assembly scaffold protein; Its function is controversial. Has been generally assumed to be an iron-sulfur cluster assembly scaffold protein , but more recent evidence suggest it is a sulfurtransferase rather than a scaffold assembly protein. Has been shown to bind low levels of a labile, air- sensitive Fe-S cluster; this can be assembled under anaerobic conditions from FeCl(3) and Li(2)S. Has been shown to be able to transfer this Fe-S cluster to an acceptor protein. Stimulates the cysteine desulfurase activity of SufS, for which it acts as a second substrate. Alkyl [...] | 0.999 |
sufD | sufB | BSU32700 | BSU32670 | FeS assembly protein SufD; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | FeS cluster formation protein; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | 0.992 |
sufD | sufU | BSU32700 | BSU32680 | FeS assembly protein SufD; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | Iron-sulfur cluster assembly scaffold protein; Its function is controversial. Has been generally assumed to be an iron-sulfur cluster assembly scaffold protein , but more recent evidence suggest it is a sulfurtransferase rather than a scaffold assembly protein. Has been shown to bind low levels of a labile, air- sensitive Fe-S cluster; this can be assembled under anaerobic conditions from FeCl(3) and Li(2)S. Has been shown to be able to transfer this Fe-S cluster to an acceptor protein. Stimulates the cysteine desulfurase activity of SufS, for which it acts as a second substrate. Alkyl [...] | 0.999 |
sufU | sufB | BSU32680 | BSU32670 | Iron-sulfur cluster assembly scaffold protein; Its function is controversial. Has been generally assumed to be an iron-sulfur cluster assembly scaffold protein , but more recent evidence suggest it is a sulfurtransferase rather than a scaffold assembly protein. Has been shown to bind low levels of a labile, air- sensitive Fe-S cluster; this can be assembled under anaerobic conditions from FeCl(3) and Li(2)S. Has been shown to be able to transfer this Fe-S cluster to an acceptor protein. Stimulates the cysteine desulfurase activity of SufS, for which it acts as a second substrate. Alkyl [...] | FeS cluster formation protein; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | 0.999 |
sufU | sufD | BSU32680 | BSU32700 | Iron-sulfur cluster assembly scaffold protein; Its function is controversial. Has been generally assumed to be an iron-sulfur cluster assembly scaffold protein , but more recent evidence suggest it is a sulfurtransferase rather than a scaffold assembly protein. Has been shown to bind low levels of a labile, air- sensitive Fe-S cluster; this can be assembled under anaerobic conditions from FeCl(3) and Li(2)S. Has been shown to be able to transfer this Fe-S cluster to an acceptor protein. Stimulates the cysteine desulfurase activity of SufS, for which it acts as a second substrate. Alkyl [...] | FeS assembly protein SufD; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation (By similarity). Belongs to the UPF0051 (ycf24) family. | 0.999 |