STRINGSTRING
sigW sigW rsiW rsiW ksgA ksgA clpP clpP spoIVB spoIVB prsW prsW rseP rseP
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
sigWRNA polymerase ECF(extracytoplasmic function)-type sigma factor W; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Sigma-W controls genes involved in response to cell envelope stress such as antimicrobial peptides , alkaline pH , transport processes and detoxification. (187 aa)
rsiWanti-sigma(W) factor; The anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-W (SigW). Holds SigW, its cognate ECF sigma factor, in an inactive form until released by regulated intramembrane proteolysis (RIP). SigW and RsiW mediate cell response to cell wall stress. RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, PrsW) , then within the membrane itself (site-2 protease, S2P [...] (208 aa)
ksgADimethyladenosine 16S ribosomal RNA transferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits; Belongs to the class I-like SAM-binding methyltransferase superfamily. rRNA adenine N(6)-methyltransferase family. RsmA subfamily. (292 aa)
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] (197 aa)
spoIVBRegulatory membrane-associated serine protease; Plays a central role in the sigma-K checkpoint which coordinates gene expression during the later stages of spore formation. The protease is activated by trans cleavage of the zymogen precursor producing SpoIVB-45 kDa. This undergoes further trimming by cis cleavage to form SpoIVB-43 kDa and SpoIVB-42 kDa. The protease then cleaves the C-terminus of the SpoIVFA metalloprotease activating the latter. (426 aa)
prsWProtease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] (218 aa)
rsePRegulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. (422 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (18%) [HD]