STRINGSTRING
cheR cheR dnaK dnaK grpE grpE yumC yumC yvsG yvsG fliS fliS fliD fliD flgL flgL cheA cheA cheY cheY fliH fliH yfhP yfhP groEL groEL groES groES dnaJ dnaJ nfrAB nfrAB cheW cheW
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cheRMethyl-accepting chemotaxis proteins (MCPs) methyltransferase; Methylation of the membrane-bound methyl-accepting chemotaxis proteins (MCP) to form gamma-glutamyl methyl ester residues in MCP. CheR is responsible for the chemotactic adaptation to repellents. (256 aa)
dnaKMolecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. (611 aa)
grpENucleotide exchange factor for DnaK activity; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. S [...] (187 aa)
yumCferredoxin-NADP+ reductase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the ferredoxin--NADP reductase type 2 family. (332 aa)
yvsGPutative membrane hydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (160 aa)
fliSFlagellar assembly protein FliS; Essential for filament assembly. May act as a facilitator of flagellin (hag) secretion. Antagonizes translational repressor CsrA indirectly. Belongs to the FliS family. (133 aa)
fliDFlagellar hook-associated capping protein 2 (HAP2); Required for the morphogenesis and for the elongation of the flagellar filament by facilitating polymerization of the flagellin monomers at the tip of growing filament. Forms a capping structure, which prevents flagellin subunits (transported through the central channel of the flagellum) from leaking out without polymerization at the distal end (By similarity); Belongs to the FliD family. (498 aa)
flgLFlagellar hook-filament junction; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; structure. (298 aa)
cheAChemotactic two-component sensor histidine kinase; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to CheB, CheY or CheV. (672 aa)
cheYRegulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. (120 aa)
fliHFlagellar export apparatus component; Needed for flagellar regrowth and assembly. (208 aa)
yfhPPutative membrane hydrolase; May act as a negative regulator for the transcription of mutY, fabL, sspE and yfhP. (327 aa)
groELChaperonin large subunit; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (544 aa)
groESChaperonin small subunit; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family. (94 aa)
dnaJCo-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] (375 aa)
nfrABNADPH-FMN oxidoreductase (nitroreductase); Reduces FMNH(2) to FMN, with NADH or NADPH as reductant. It also reduces nitroaromatic compounds, quinones, chromates and azo dyes. It could supply the reduced form of FMN to luciferase-like protein and contribute to the degradation of aromatic compounds. Belongs to the flavin oxidoreductase frp family. (249 aa)
cheWModulation of CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheV and CheW are involved in the coupling of the methyl-accepting chemoreceptors to the central two- component kinase CheA; they are both necessary for efficient chemotaxis. (156 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (18%) [HD]