node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ftsA | ftsW | BSU15280 | BSU14850 | Cell-division protein essential fo Z-ring assembly; Cell division protein that is required for the assembly of the Z ring. May serve as a membrane anchor for the Z ring (By similarity). Binds and hydrolyzes ATP. Also involved in sporulation (Probable). Belongs to the FtsA/MreB family. | Cell-division protein; Peptidoglycan polymerase that is essential for cell division. | 0.999 |
ftsA | ftsZ | BSU15280 | BSU15290 | Cell-division protein essential fo Z-ring assembly; Cell division protein that is required for the assembly of the Z ring. May serve as a membrane anchor for the Z ring (By similarity). Binds and hydrolyzes ATP. Also involved in sporulation (Probable). Belongs to the FtsA/MreB family. | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | 0.999 |
ftsA | recA | BSU15280 | BSU16940 | Cell-division protein essential fo Z-ring assembly; Cell division protein that is required for the assembly of the Z ring. May serve as a membrane anchor for the Z ring (By similarity). Binds and hydrolyzes ATP. Also involved in sporulation (Probable). Belongs to the FtsA/MreB family. | Multifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] | 0.475 |
ftsW | ftsA | BSU14850 | BSU15280 | Cell-division protein; Peptidoglycan polymerase that is essential for cell division. | Cell-division protein essential fo Z-ring assembly; Cell division protein that is required for the assembly of the Z ring. May serve as a membrane anchor for the Z ring (By similarity). Binds and hydrolyzes ATP. Also involved in sporulation (Probable). Belongs to the FtsA/MreB family. | 0.999 |
ftsW | ftsZ | BSU14850 | BSU15290 | Cell-division protein; Peptidoglycan polymerase that is essential for cell division. | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | 0.999 |
ftsW | yvsG | BSU14850 | BSU33350 | Cell-division protein; Peptidoglycan polymerase that is essential for cell division. | Putative membrane hydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. | 0.489 |
ftsZ | ftsA | BSU15290 | BSU15280 | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | Cell-division protein essential fo Z-ring assembly; Cell division protein that is required for the assembly of the Z ring. May serve as a membrane anchor for the Z ring (By similarity). Binds and hydrolyzes ATP. Also involved in sporulation (Probable). Belongs to the FtsA/MreB family. | 0.999 |
ftsZ | ftsW | BSU15290 | BSU14850 | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | Cell-division protein; Peptidoglycan polymerase that is essential for cell division. | 0.999 |
ftsZ | lexA | BSU15290 | BSU17850 | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA. | 0.769 |
ftsZ | radA | BSU15290 | BSU00870 | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | DNA repair protein; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. | 0.437 |
ftsZ | recA | BSU15290 | BSU16940 | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | Multifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] | 0.880 |
ftsZ | spo0A | BSU15290 | BSU24220 | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | Response regulator; May play the central regulatory role in sporulation. It may be an element of the effector pathway responsible for the activation of sporulation genes in response to nutritional stress. Spo0A may act in concert with Spo0H (a sigma factor) to control the expression of some genes that are critical to the sporulation process. Repressor of abrB, activator of the spoIIa operon. Binds the DNA sequence 5'-TGNCGAA-3' (0A box). | 0.651 |
ftsZ | yneA | BSU15290 | BSU17860 | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | Cell division inhibitor; Inhibits cell division during the SOS response. Affects a later stage of the cell division protein assembly, after the assembly of the Z ring, by probably suppressing recruitment of FtsL and/or DivIC to the division machinery (By similarity). | 0.810 |
lexA | ftsZ | BSU17850 | BSU15290 | Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA. | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | 0.769 |
lexA | radA | BSU17850 | BSU00870 | Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA. | DNA repair protein; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. | 0.585 |
lexA | recA | BSU17850 | BSU16940 | Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA. | Multifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] | 0.999 |
lexA | ruvA | BSU17850 | BSU27740 | Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA. | Holliday junction DNA helicase; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. | 0.833 |
lexA | spo0A | BSU17850 | BSU24220 | Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA. | Response regulator; May play the central regulatory role in sporulation. It may be an element of the effector pathway responsible for the activation of sporulation genes in response to nutritional stress. Spo0A may act in concert with Spo0H (a sigma factor) to control the expression of some genes that are critical to the sporulation process. Repressor of abrB, activator of the spoIIa operon. Binds the DNA sequence 5'-TGNCGAA-3' (0A box). | 0.473 |
lexA | yneA | BSU17850 | BSU17860 | Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA. | Cell division inhibitor; Inhibits cell division during the SOS response. Affects a later stage of the cell division protein assembly, after the assembly of the Z ring, by probably suppressing recruitment of FtsL and/or DivIC to the division machinery (By similarity). | 0.948 |
radA | ftsZ | BSU00870 | BSU15290 | DNA repair protein; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | 0.437 |