Your Input: | |||||
| cysH | (phospho)adenosine phosphosulfate reductase; Reduction of activated sulfate into sulfite. (233 aa) | ||||
| cysE | Serine acetyltransferase; Catalyzes the acetylation of serine by acetyl-CoA to produce O-acetylserine (OAS). (217 aa) | ||||
| cysS | cysteinyl-tRNA synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I aminoacyl-tRNA synthetase family. (466 aa) | ||||
| sigH | RNA polymerase sigma-30 factor (sigma(H)); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in the transition to post- exponential phase in the beginning of sporulation. It is also required for transcription of several stationary phase genes. (218 aa) | ||||
| nasC | Assimilatory nitrate reductase (catalytic subunit); Nitrate reductase is a key enzyme involved in the first step of nitrate assimilation in plants, fungi and bacteria. (710 aa) | ||||
| nasA | Putative nitrate transporter; May function as a nitrate transporter. (401 aa) | ||||
| sigB | RNA polymerase sigma-37 factor (sigma(B)); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Sigma B is not essential for sporulation; rather it is required for maximal expression of ctc and csbA which are transcribed in the early stationary phase under conditions inimical to sporulation. May play a role in the ability of the bacterium to adapt to various stresses but is not essential for its survival under these conditions. Positively regulates expression of its own operon; Belongs to the sigma-70 fac [...] (262 aa) | ||||
| yfmE | Iron-dicitrate ABC transporter (permease); Part of the ABC transporter complex YfmCDEF involved in citrate-dependent Fe(3+) import. Involved in the translocation of the substrate across the membrane (Probable). (333 aa) | ||||
| yfmD | Iron-dicitrate ABC transporter (permease); Part of the ABC transporter complex YfmCDEF involved in citrate-dependent Fe(3+) import. Involved in the translocation of the substrate across the membrane (Probable). (333 aa) | ||||
| pit | Low-affinity inorganic phosphate transporter; Low-affinity inorganic phosphate transport; Belongs to the inorganic phosphate transporter (PiT) (TC 2.A.20) family. Pit subfamily. (333 aa) | ||||
| tnrA | Nitrogen sensing transcriptional regulator; Transcription regulator that actives the transcription of genes required for nitrogen assimilation such as nrgAB (ammonium transport), nasABCDEF (nitrate/nitrite assimilation), ureABC (urea degradation) and gabP (GABA transport), during nitrogen limitation. Also represses glnRA and gltAB in the absence of ammonium. On the contrary of the MerR members, which require longer DNA sites for high-affinity binding, TnrA requires a DNA sequence of 17 nucleotides as minimal binding site. (110 aa) | ||||
| cysP | Sulfate permease; Involved in the import of sulfate. (354 aa) | ||||
| cysC | Adenylylsulfate kinase; Catalyzes the synthesis of activated sulfate; Belongs to the APS kinase family. (197 aa) | ||||
| resE | Two-component sensor histidine kinase; Member of the two-component regulatory system ResD/ResE involved in the global regulation of aerobic and anaerobic respiration. Probably phosphorylates ResD. (589 aa) | ||||
| resD | Two-component response regulator; Member of the two-component regulatory system ResD/ResE. Required for the expression of resA, ctaA, qcrABC and fnr; activation role in global regulation of aerobic and anaerobic respiration. (240 aa) | ||||
| sigF | RNA polymerase sporulation-specific sigma factor (sigma-F); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of sporulation specific genes. Interaction with SpoIIAB inhibits sigma-F activity throughout the cell before the formation of the asymmetric septum; after septation the interaction is confined to the mother cell, and sigma F activity is released in the prespore. Responsible for expression of csfB (the anti-sigma-G factor Gin). (255 aa) | ||||
| iscSA | Cysteine desulfurase involved in tRNA thiolation; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. (379 aa) | ||||
| nifS | Putative desulfurase involved in iron-sulfur clusters for NAD biosynthesis; Catalyzes the removal of elemental sulfur from cysteine to produce alanine (By similarity). Seems to be required for NAD biosynthesis. (395 aa) | ||||
| iscSB | Cysteine desulfurase; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. (381 aa) | ||||
| sufU | Iron-sulfur cluster assembly scaffold protein; Its function is controversial. Has been generally assumed to be an iron-sulfur cluster assembly scaffold protein , but more recent evidence suggest it is a sulfurtransferase rather than a scaffold assembly protein. Has been shown to bind low levels of a labile, air- sensitive Fe-S cluster; this can be assembled under anaerobic conditions from FeCl(3) and Li(2)S. Has been shown to be able to transfer this Fe-S cluster to an acceptor protein. Stimulates the cysteine desulfurase activity of SufS, for which it acts as a second substrate. Alkyl [...] (147 aa) | ||||
| cysI | Sulfite reductase (hemoprotein beta-subunit); Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate (Probable); Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (571 aa) | ||||
| cysJ | Sulfite reductase (flavoprotein alpha-subunit); Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component (Probable). (605 aa) | ||||
| sigL | RNA polymerase sigma-54 factor (sigma-L); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of the levanase operon. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for receipt of the melting signal from the remotely bound activator protein LevR for the expression of the levanase operon. (436 aa) | ||||
| amtB | Ammonium transporter; Functions as an ammonium and methylammonium transporter in the absence of glutamine. Required for ammonium utilization at low concentrations or at low pH values, when ammonium is the single nitrogen source. Required for binding of NrgB to the membrane. Interaction between GlnK-AmtB complex and TnrA protects TnrA from proteolytic degradation. (404 aa) | ||||
| atpC | ATP synthase (subunit epsilon, F1 subunit); Produces ATP from ADP in the presence of a proton gradient across the membrane. (132 aa) | ||||
| atpD | ATP synthase (subunit beta, component F1); Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (473 aa) | ||||
| atpA | ATP synthase (subunit alpha, component F1); Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit; Belongs to the ATPase alpha/beta chains family. (502 aa) | ||||
| atpE | ATP synthase (subunit c, component F0); F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (70 aa) | ||||