node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
clpC | clpP | BSU00860 | BSU34540 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | 0.999 |
clpC | clpX | BSU00860 | BSU28220 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | Protein unfolding ATPase required for presentation of proteins to proteases; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (By similarity). Probably the major protease that degrades proteins tagged by trans-translation. | 0.754 |
clpC | comK | BSU00860 | BSU10420 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | Competence transcription factor (CTF); A master regulator required for the expression of late competence genes including comC, comE, comG and the bdbDC operon. Receives signals from SrfA, and possibly other regulatory COM genes, and transduces these signals to the late COM genes. Represses transcription of rok. May repress expression of a few genes. | 0.973 |
clpC | comS | BSU00860 | BSU03500 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | Regulator of genetic competence; Required for the development of competence. | 0.847 |
clpC | ctsR | BSU00860 | BSU00830 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | Transcriptional regulator; Controls the expression of the cellular protein quality control genes clpC, clpE and clpP, as well as mcsA and mcsB. Acts as a repressor of these class III stress genes by binding to a directly repeated heptanucleotide operator sequence (A/GGTCAAA NAN A/GGTCAAA). After heat shock, CtsR is degraded by the ClpCP and ClpEP proteolytic systems, ensuring the derepression of clpE, clpP and the clpC operon. CtsR negatively autoregulates its own synthesis. | 0.998 |
clpC | dnaA | BSU00860 | BSU00010 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | Chromosomal replication initiator protein DnaA; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. DnaA can inhibit its own gene expression as well as that of other genes. | 0.405 |
clpC | mcsB | BSU00860 | BSU00850 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | Protein tyrosine kinase; Catalyzes the specific phosphorylation of arginine residues in a large number of proteins. Is part of the bacterial stress response system, where it is involved in regulating the global heat shock repressor CtsR; phosphorylates arginine residues in the winged helix- turn-helix domain of CtsR, thereby preventing its binding to DNA and consequently inducing the expression of repressed genes. The transcriptional repressor HrcA, the chaperone GroEL, the unfoldase ClpC, together with several ribosomal subunits, represent other physiological targets of McsB under str [...] | 0.999 |
clpC | mecA | BSU00860 | BSU11520 | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | Adaptor protein controlling oligomerization of the AAA+ protein ClpC; Enables the recognition and targeting of unfolded and aggregated proteins to the ClpC protease or to other proteins involved in proteolysis. Acts negatively in the development of competence by binding ComK and recruiting it to the ClpCP protease. When overexpressed, inhibits sporulation. Also involved in Spx degradation by ClpC. | 0.999 |
clpP | clpC | BSU34540 | BSU00860 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | 0.999 |
clpP | clpX | BSU34540 | BSU28220 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Protein unfolding ATPase required for presentation of proteins to proteases; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (By similarity). Probably the major protease that degrades proteins tagged by trans-translation. | 0.999 |
clpP | comK | BSU34540 | BSU10420 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Competence transcription factor (CTF); A master regulator required for the expression of late competence genes including comC, comE, comG and the bdbDC operon. Receives signals from SrfA, and possibly other regulatory COM genes, and transduces these signals to the late COM genes. Represses transcription of rok. May repress expression of a few genes. | 0.890 |
clpP | comS | BSU34540 | BSU03500 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Regulator of genetic competence; Required for the development of competence. | 0.755 |
clpP | ctsR | BSU34540 | BSU00830 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Transcriptional regulator; Controls the expression of the cellular protein quality control genes clpC, clpE and clpP, as well as mcsA and mcsB. Acts as a repressor of these class III stress genes by binding to a directly repeated heptanucleotide operator sequence (A/GGTCAAA NAN A/GGTCAAA). After heat shock, CtsR is degraded by the ClpCP and ClpEP proteolytic systems, ensuring the derepression of clpE, clpP and the clpC operon. CtsR negatively autoregulates its own synthesis. | 0.949 |
clpP | dnaA | BSU34540 | BSU00010 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Chromosomal replication initiator protein DnaA; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. DnaA can inhibit its own gene expression as well as that of other genes. | 0.505 |
clpP | mcsB | BSU34540 | BSU00850 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Protein tyrosine kinase; Catalyzes the specific phosphorylation of arginine residues in a large number of proteins. Is part of the bacterial stress response system, where it is involved in regulating the global heat shock repressor CtsR; phosphorylates arginine residues in the winged helix- turn-helix domain of CtsR, thereby preventing its binding to DNA and consequently inducing the expression of repressed genes. The transcriptional repressor HrcA, the chaperone GroEL, the unfoldase ClpC, together with several ribosomal subunits, represent other physiological targets of McsB under str [...] | 0.968 |
clpP | mecA | BSU34540 | BSU11520 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | Adaptor protein controlling oligomerization of the AAA+ protein ClpC; Enables the recognition and targeting of unfolded and aggregated proteins to the ClpC protease or to other proteins involved in proteolysis. Acts negatively in the development of competence by binding ComK and recruiting it to the ClpCP protease. When overexpressed, inhibits sporulation. Also involved in Spx degradation by ClpC. | 0.984 |
clpP | smpB | BSU34540 | BSU33600 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | tmRNA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches t [...] | 0.607 |
clpX | clpC | BSU28220 | BSU00860 | Protein unfolding ATPase required for presentation of proteins to proteases; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (By similarity). Probably the major protease that degrades proteins tagged by trans-translation. | Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. | 0.754 |
clpX | clpP | BSU28220 | BSU34540 | Protein unfolding ATPase required for presentation of proteins to proteases; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (By similarity). Probably the major protease that degrades proteins tagged by trans-translation. | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] | 0.999 |
clpX | comK | BSU28220 | BSU10420 | Protein unfolding ATPase required for presentation of proteins to proteases; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (By similarity). Probably the major protease that degrades proteins tagged by trans-translation. | Competence transcription factor (CTF); A master regulator required for the expression of late competence genes including comC, comE, comG and the bdbDC operon. Receives signals from SrfA, and possibly other regulatory COM genes, and transduces these signals to the late COM genes. Represses transcription of rok. May repress expression of a few genes. | 0.487 |