Your Input: | |||||
leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 1 subfamily. (365 aa) | ||||
rsh | GTP pyrophosphokinase (RelA/SpoT); In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp, it is probably the hydrolysis activity that is required for optimal growth (Probable); Belongs to the RelA/SpoT family. (734 aa) | ||||
spo0A | Response regulator; May play the central regulatory role in sporulation. It may be an element of the effector pathway responsible for the activation of sporulation genes in response to nutritional stress. Spo0A may act in concert with Spo0H (a sigma factor) to control the expression of some genes that are critical to the sporulation process. Repressor of abrB, activator of the spoIIa operon. Binds the DNA sequence 5'-TGNCGAA-3' (0A box). (267 aa) | ||||
thyB | Thymidylate synthase B; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (264 aa) | ||||
ilvA | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). (422 aa) | ||||
gyrA | DNA gyrase (subunit A); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (821 aa) | ||||
alrA | D-alanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family. (389 aa) | ||||
cysE | Serine acetyltransferase; Catalyzes the acetylation of serine by acetyl-CoA to produce O-acetylserine (OAS). (217 aa) | ||||
holB | DNA polymerase III delta' subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. (329 aa) | ||||
ndoA | Endoribonuclease toxin; Toxic component of a type II toxin-antitoxin (TA) system. Specific for 5'-UACAU-3' sequences, cleaving after the first U. Yields cleavage products with 3' phosphate and 5' hydroxyl groups. Cannot digest substrate with a UUdUACAUAA cleavage site. Overexpression is toxic for cell growth (shown in E.coli), probably by inhibiting protein synthesis through the cleavage of single-stranded RNA. The toxicity is reversed by the antitoxin EndoAI. Toxin activity cannot be inhibited by MazE from E.coli. The EndoA-EndoAI complex does not seem to bind its own promoter. (116 aa) | ||||
cspB | Major cold-shock protein, RNA helicase co-factor, RNA co-chaperone; Binds to the pentamer sequences ATTGG and CCAAT with highest affinity in single-stranded DNA, and also to other sequences. Has greater affinity for ATTGG than CCAAT. Can act as transcriptional activator of cold shock genes by recognizing putative ATTGG-box elements present in promoter regions of genes induced under cold shock conditions. (67 aa) | ||||
phoA | Alkaline phosphatase A; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the alkaline phosphatase family. (461 aa) | ||||
ftsZ | Cell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (382 aa) | ||||
dapA | Dihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (290 aa) | ||||
proH | Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (297 aa) | ||||
thyA | Hypothetical protein; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (279 aa) | ||||
yneI | Putative response regulator (CheY homolog); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative regulator. (120 aa) | ||||
ccdA | Cytochrome c-type biogenesis protein CcdA; Required for cytochrome c synthesis and stage V of sporulation. Might transfer reducing equivalents across the cytoplasmic membrane, promoting efficient disulfide bond isomerization of proteins localized on the outer surface of the membrane or in the spore coat. (235 aa) | ||||
licR | Transcriptional activator of the lichenan operon; Positive regulator of the licABCH operon; Belongs to the transcriptional antiterminator BglG family. (641 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity); Belongs to the SHMT family. (415 aa) | ||||
ytvA | Blue light GTP-binding receptor; Exhibits the same spectroscopical features and blue-light induced photochemistry as plants phototropins, with the reversible formation of a blue-shifted photoproduct, assigned to an FMN-cysteine thiol adduct. Although it is a positive regulator in the activation of the environmental signaling branch of the general stress transcription factor sigma-B, its precise role is undetermined. (261 aa) | ||||
murC | UDP-N-acetyl muramate-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (432 aa) | ||||
mreB | Cell-shape determining protein; Forms membrane-associated dynamic filaments that are essential for cell shape determination. Acts by regulating cell wall synthesis and cell elongation, and thus cell shape. A feedback loop between cell geometry and MreB localization may maintain elongated cell shape by targeting cell wall growth to regions of negative cell wall curvature (By similarity). Filaments rotate around the cell circumference in concert with the cell wall synthesis enzymes. The process is driven by the cell wall synthesis machinery and does not depend on MreB polymerization. The [...] (337 aa) |