STRINGSTRING
gntP gntP srfAA srfAA hutH hutH flgK flgK flgL flgL fliD fliD fliS fliS opuCA opuCA aspS aspS aroD aroD sinI sinI cheR cheR kdgA kdgA yodE yodE recA recA cheW cheW cheY cheY fliM fliM fliL fliL fliG fliG motB motB mhqA mhqA argB argB argC argC groEL groEL ydfO ydfO
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gntPGluconate permease; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type t: transporter; Belongs to the GntP permease family. (448 aa)
srfAASurfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. (3587 aa)
hutHHistidine ammonia-lyase (histidase); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (508 aa)
flgKFlagellar hook-filament junction; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; structure. (507 aa)
flgLFlagellar hook-filament junction; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; structure. (298 aa)
fliDFlagellar hook-associated capping protein 2 (HAP2); Required for the morphogenesis and for the elongation of the flagellar filament by facilitating polymerization of the flagellin monomers at the tip of growing filament. Forms a capping structure, which prevents flagellin subunits (transported through the central channel of the flagellum) from leaking out without polymerization at the distal end (By similarity); Belongs to the FliD family. (498 aa)
fliSFlagellar assembly protein FliS; Essential for filament assembly. May act as a facilitator of flagellin (hag) secretion. Antagonizes translational repressor CsrA indirectly. Belongs to the FliS family. (133 aa)
opuCAGlycine betaine/carnitine/choline/choline sulfate ABC transporter (ATP-binding protein); Involved in a high affinity multicomponent binding-protein- dependent transport system for glycine betaine, carnitine and choline; probably responsible for energy coupling to the transport system. (380 aa)
aspSaspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (592 aa)
aroDShikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (280 aa)
sinIAntagonist of SinR; Acts as an antagonist to SinR. SinI prevents SinR from binding to its target sequence on the gene for AprE. (57 aa)
cheRMethyl-accepting chemotaxis proteins (MCPs) methyltransferase; Methylation of the membrane-bound methyl-accepting chemotaxis proteins (MCP) to form gamma-glutamyl methyl ester residues in MCP. CheR is responsible for the chemotactic adaptation to repellents. (256 aa)
kdgA2-keto-3-deoxygluconate-6-phosphate aldolase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (196 aa)
yodEPutative lyase/dioxygenase; Putative ring-cleavage dioxygenase that may contribute to the degradation of aromatic compounds. (303 aa)
recAMultifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] (348 aa)
cheWModulation of CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheV and CheW are involved in the coupling of the methyl-accepting chemoreceptors to the central two- component kinase CheA; they are both necessary for efficient chemotaxis. (156 aa)
cheYRegulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. (120 aa)
fliMFlagellar motor switching and energizing component; One of the proteins that forms a switch complex that is proposed to be located at the base of the basal body. This complex interacts with chemotaxis proteins (such as CheY) in addition to contacting components of the motor that determine the direction of flagellar rotation; Belongs to the FliM family. (332 aa)
fliLFlagellar basal-body associated protein; Controls the rotational direction of flagella during chemotaxis; Belongs to the FliL family. (140 aa)
fliGFlagellar motor switching and energizing component; One of the proteins that forms a switch complex that is proposed to be located at the base of the basal body. This complex interacts with chemotaxis proteins (such as CheY) in addition to contacting components of the motor that determine the direction of flagellar rotation; Belongs to the FliG family. (338 aa)
motBMotility protein B; MotA and MotB comprise the stator element of the flagellar motor complex. Required for the rotation of the flagellar motor. Might be a linker that fastens the torque-generating machinery to the cell wall (By similarity). (261 aa)
mhqAPutative hydroquinone-specific extradiol dioxygenase; Putative ring-cleavage dioxygenase that may contribute to the degradation of aromatic compounds. (316 aa)
argBN-acetylglutamate 5-phosphotransferase (acetylglutamate kinase); Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (258 aa)
argCN-acetylglutamate gamma-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (345 aa)
groELChaperonin large subunit; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (544 aa)
ydfOPutative dioxygenase; Putative ring-cleavage dioxygenase that may contribute to the degradation of aromatic compounds. (312 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (24%) [HD]