STRINGSTRING
ptsI ptsI sacT sacT fbaA fbaA ywjI ywjI tpiA tpiA pfkA pfkA mdh mdh proI proI xylB xylB rpe rpe ptsG ptsG gutB gutB mtlR mtlR mtlF mtlF mtlA mtlA hxlA hxlA hxlB hxlB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ptsIPhosphotransferase system (PTS) enzyme I; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). (570 aa)
sacTTranscriptional antiterminator; Mediates positive regulation of the sacPA operon by functioning as an antiterminator factor of transcription; Belongs to the transcriptional antiterminator BglG family. (276 aa)
fbaAFructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (285 aa)
ywjIPutative fructose 1,6-bisphosphatase class II; Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate. Can functionally substitute for the FBPase class 3 (Fbp) of B.subtilis. (321 aa)
tpiATriose phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (253 aa)
pfkA6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (319 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa)
proIPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (278 aa)
xylBXylulose kinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate; Belongs to the FGGY kinase family. (499 aa)
rpeRibulose-5-phosphate 3-epimerase; Catalyzes the reversible epimerization of D-ribulose 5- phosphate to D-xylulose 5-phosphate; Belongs to the ribulose-phosphate 3-epimerase family. (217 aa)
ptsGPhosphotransferase system (PTS) glucose-specific enzyme IICBA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport. (699 aa)
gutBGlucitol (sorbitol) dehydrogenase; Polyol dehydrogenase that catalyzes the NAD(+)-dependent oxidation of various sugar alcohols. Is mostly active with D-sorbitol (D-glucitol), xylitol and L-iditol as substrates, leading to the C2- oxidized products D-fructose, D-xylulose and L-sorbose, respectively. (353 aa)
mtlRTranscriptional regulator; Positively regulates the expression of the mtlAFD operon involved in the uptake and catabolism of mannitol. (694 aa)
mtlFPhosphotransferase system (PTS) mannitol-specific enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II CmtAB PTS system is involved in D-mannitol transport. (143 aa)
mtlAPhosphotransferase system (PTS) mannitol-specific enzyme IICB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II CmtAB PTS system is involved in D-mannitol transport. (478 aa)
hxlA3-hexulose-6-phosphate synthase (HPS); Catalyzes the condensation of ribulose 5-phosphate with formaldehyde to form 3-hexulose 6-phosphate. Together with HxlB, may act as a formaldehyde detoxification system; Belongs to the HPS/KGPDC family. HPS subfamily. (210 aa)
hxlB6-phospho-3-hexuloisomerase (PHI); Catalyzes the isomerization between 3-hexulose 6-phosphate and fructose 6-phosphate. Together with HxlA, may act as a formaldehyde detoxification system. (185 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (22%) [HD]