STRINGSTRING
ddl ddl groES groES yhdR yhdR dat dat alrB alrB aspB aspB ald ald bacG bacG alrA alrA gabT gabT
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ddlD-alanyl-D-alanine ligase A; Cell wall formation. (354 aa)
groESChaperonin small subunit; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family. (94 aa)
yhdRPutative aspartate aminotransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (393 aa)
datD-alanine aminotransferase; Acts on the D-isomers of alanine, leucine, aspartate, glutamate, aminobutyrate, norvaline and asparagine. The enzyme transfers an amino group from a substrate D-amino acid to the pyridoxal phosphate cofactor to form pyridoxamine and an alpha-keto acid in the first half-reaction. The second half-reaction is the reverse of the first, transferring the amino group from the pyridoxamine to a second alpha-keto acid to form the product D-amino acid via a ping-pong mechanism. This is an important process in the formation of D-alanine and D-glutamate, which are essen [...] (282 aa)
alrBAlanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family. (394 aa)
aspBPutative aspartate aminotransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (393 aa)
aldL-alanine dehydrogenase; Catalyzes the reversible oxidative deamination of L-alanine to pyruvate. This enzyme is a key factor in the assimilation of L- alanine as an energy source through the tricarboxylic acid cycle during sporulation. (378 aa)
bacGPhenylalanine aminotransferase forming tetrahydrotyrosine in bacilysin synthesis; Part of the bacABCDEF operon responsible for the biosynthesis of the nonribosomally synthesized dipeptide antibiotic bacilysin, composed of L-alanine and L-anticapsin. Bacilysin is an irreversible inactivator of the glutaminase domain of glucosamine synthetase. Catalyzes the reductive amination of the C2 ketone of tetrahydro-hydroxyphenylpyruvate (H4HPP), with L-Phe as an amino donor, to yield tetrahydrotyrosine (H4Tyr) diastereomer. D-Phe is not an effective amino donor. BacF associated to BacG converts [...] (399 aa)
alrAD-alanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family. (389 aa)
gabT4-aminobutyrate aminotransferase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (436 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (34%) [HD]