STRINGSTRING
srfAA srfAA srfAB srfAB srfAC srfAC srfAD srfAD fabHA fabHA fabI fabI fabD fabD recA recA acsA acsA liaH liaH sacP sacP
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
srfAASurfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. (3587 aa)
srfABSurfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. (3583 aa)
srfACSurfactin synthetase; Probably activates a leucine. (1275 aa)
srfADSurfactin synthetase; Probable thioesterase involved in the biosynthesis of surfactin; Belongs to the thioesterase family. (242 aa)
fabHABeta-ketoacyl-acyl carrier protein synthase III 1; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Has some substrate specificity for branched chain acyl-CoA, determining the biosynthesis of branched-chain of fatty acids instead of straight-chain. (312 aa)
fabIEnoyl-acyl carrier protein reductase; Catalyzes the reduction of a carbon-carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP). Involved in the elongation cycle of fatty acid which are used in the lipid metabolism. (258 aa)
fabDMalonyl CoA:acyl carrier protein transacylase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the FabD family. (317 aa)
recAMultifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] (348 aa)
acsAacetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA (By similarity). Has a role in growth and sporulation on acetate. (572 aa)
liaHModulator of liaIHGFSR (yvqIHGFEC) operon expression; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type f: factor. (225 aa)
sacPPhosphotransferase system (PTS) sucrose-specific enzyme IIBC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in sucrose transport. (461 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (26%) [HD]