node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
accD | fabF | BSU29210 | BSU11340 | acetyl-CoA carboxylase (carboxyltransferase beta subunit); Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA. | Beta-ketoacyl-acyl carrier protein synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. | 0.973 |
accD | pfkA | BSU29210 | BSU29190 | acetyl-CoA carboxylase (carboxyltransferase beta subunit); Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA. | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. | 0.564 |
accD | pta | BSU29210 | BSU37660 | acetyl-CoA carboxylase (carboxyltransferase beta subunit); Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA. | Phosphotransacetylase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. | 0.915 |
ackA | ccpA | BSU29470 | BSU29740 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | 0.900 |
ackA | fbaA | BSU29470 | BSU37120 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. | 0.766 |
ackA | pfkA | BSU29470 | BSU29190 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. | 0.804 |
ackA | pta | BSU29470 | BSU37660 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | Phosphotransacetylase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. | 0.999 |
ackA | ptsH | BSU29470 | BSU13900 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | Histidine-containing phosphocarrier protein of the phosphotransferase system (PTS) (HPr protein); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain. | 0.489 |
ackA | ptsI | BSU29470 | BSU13910 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | Phosphotransferase system (PTS) enzyme I; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). | 0.607 |
ackA | tkt | BSU29470 | BSU17890 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. | 0.603 |
ackA | zwf | BSU29470 | BSU23850 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | Glucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. | 0.756 |
bmrR | cueR | BSU24020 | BSU09560 | Transcriptional regulator (MerR family); Activates transcription of the bmr gene in response to structurally dissimilar drugs. Binds rhodamine as an inducer. | Copper efflux transcriptional regulator; Transcriptional activator of the copZA operon. | 0.942 |
ccpA | ackA | BSU29740 | BSU29470 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. | 0.900 |
ccpA | fbaA | BSU29740 | BSU37120 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. | 0.737 |
ccpA | glnR | BSU29740 | BSU17450 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | Transcriptional regulator (nitrogen metabolism); Transcription repressor that represses many genes including ureABC and tnrA, during nitrogen excess. On the contrary of the MerR members, which require longer DNA sites for high-affinity binding, GlnR requires a DNA sequence of 17 nucleotides as minimal binding site. | 0.483 |
ccpA | pfkA | BSU29740 | BSU29190 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. | 0.740 |
ccpA | pgcA | BSU29740 | BSU09310 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | Alpha-phosphoglucomutase; Catalyzes the interconversion between glucose-6-phosphate and alpha-glucose-1-phosphate. This is the first step in the biosynthesis of diglucosyl-diacylglycerol (Glc2-DAG), i.e. the predominant glycolipid found in B.subtilis membrane, which is also used as a membrane anchor for lipoteichoic acid (LTA). Has a role in the biosynthesis of all phosphate-containing envelope polymers, since glucose-1-phosphate is the precursor of UDP-glucose, which serves as a glucosyl donor not only for the biosynthesis of LTA but also for wall teichoic acids (WTAs). Is required fo [...] | 0.640 |
ccpA | pta | BSU29740 | BSU37660 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | Phosphotransacetylase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. | 0.582 |
ccpA | ptsH | BSU29740 | BSU13900 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | Histidine-containing phosphocarrier protein of the phosphotransferase system (PTS) (HPr protein); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain. | 0.998 |
ccpA | ptsI | BSU29740 | BSU13910 | Transcriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. | Phosphotransferase system (PTS) enzyme I; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). | 0.870 |