STRINGSTRING
murF murF cwlD cwlD nusG nusG narI narI rho rho ytgP ytgP ezrA ezrA accB accB sbcC sbcC acoL acoL cotJA cotJA murG murG ftsZ ftsZ lpdV lpdV recN recN xseA xseA pdhD pdhD folD folD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
murFUDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6-diaminopimelate-D-alanyl-D-alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein; Belongs to the MurCDEF family. MurF subfamily. (457 aa)
cwlDN-acetylmuramoyl-L-alanine amidase; Cleaves the peptide side chain from the N-acetylmuramic acid residues in peptidoglycan. This is a step in the formation of muramic delta-lactam residues in spore cortex. (237 aa)
nusGTranscription antitermination factor; Participates in transcription elongation, termination and antitermination. Stimulates RNA polymerase pausing at U107 and U144 in the trp leader. NusG-stimulated pausing is sequence specific. Does not affect trp leader termination. (177 aa)
narINitrate reductase (gamma subunit); The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (223 aa)
rhoTranscriptional terminator Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (427 aa)
ytgPPutative enzyme involved in polysaccharide biosynthesis; Involved in peptidoglycan biosynthesis. Transports lipid- linked peptidoglycan precursors from the inner to the outer leaflet of the cytoplasmic membrane. Not essential for growth. (544 aa)
ezrANegative regulator of FtsZ ring formation; Negative regulator of FtsZ ring formation; modulates the frequency and position of FtsZ ring formation. Inhibits FtsZ ring formation at polar sites. Interacts either with FtsZ or with one of its binding partners to promote depolymerization. (562 aa)
accBacetyl-CoA carboxylase subunit (biotin carboxyl carrier subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA (By similarity). Binds biotin. (159 aa)
sbcCDNA ATP-dependent repair enzyme; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity (By similarity); Belongs to the SMC family. SbcC subfamily. (1130 aa)
acoLAcetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (458 aa)
cotJAComponent of the inner spore coat; The cotJ operon proteins affect spore coat composition. They are either required for the normal formation of the inner layers of the coat or are themselves structural components of the coat. (82 aa)
murGUndecaprenyl-PP-MurNAc-pentapeptide-UDPGlcNAc GlcNAc transferase; Cell wall formation. Catalyzes the transfer of a GlcNAc subunit on undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide (lipid intermediate I) to form undecaprenyl-pyrophosphoryl-MurNAc- (pentapeptide)GlcNAc (lipid intermediate II); Belongs to the glycosyltransferase 28 family. MurG subfamily. (363 aa)
ftsZCell-division initiation protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (382 aa)
lpdVBranched-chain alpha-keto acid dehydrogenase E3 subunit (dihydrolipoamide dehydrogenase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (474 aa)
recNFactor for double strand breaks DNA repair and genetic recombination; Involved in recombinational repair of damaged DNA. Seems to be the first protein recruited to repair centers, foci that are the site of double-strand DNA break(s), followed by RecO and then RecF. (576 aa)
xseAExodeoxyribonuclease VII (large subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. (448 aa)
pdhDDihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (470 aa)
folDMethylenetetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (283 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (10%) [HD]