node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
clpQ | clpY | BSU16150 | BSU16160 | Two-component ATP-dependent protease (N-terminal serine protease); Protease subunit of a proteasome-like degradation complex. Belongs to the peptidase T1B family. HslV subfamily. | Two-component ATP-dependent protease (ATPase and chaperone); ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity; Belongs to the ClpX chaperone family. HslU subfamily. | 0.999 |
clpQ | codV | BSU16150 | BSU16140 | Two-component ATP-dependent protease (N-terminal serine protease); Protease subunit of a proteasome-like degradation complex. Belongs to the peptidase T1B family. HslV subfamily. | Site-specific tyrosine recombinase for chromosome partitioning; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.983 |
clpQ | codY | BSU16150 | BSU16170 | Two-component ATP-dependent protease (N-terminal serine protease); Protease subunit of a proteasome-like degradation complex. Belongs to the peptidase T1B family. HslV subfamily. | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | 0.821 |
clpY | clpQ | BSU16160 | BSU16150 | Two-component ATP-dependent protease (ATPase and chaperone); ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity; Belongs to the ClpX chaperone family. HslU subfamily. | Two-component ATP-dependent protease (N-terminal serine protease); Protease subunit of a proteasome-like degradation complex. Belongs to the peptidase T1B family. HslV subfamily. | 0.999 |
clpY | codV | BSU16160 | BSU16140 | Two-component ATP-dependent protease (ATPase and chaperone); ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity; Belongs to the ClpX chaperone family. HslU subfamily. | Site-specific tyrosine recombinase for chromosome partitioning; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.939 |
clpY | codY | BSU16160 | BSU16170 | Two-component ATP-dependent protease (ATPase and chaperone); ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity; Belongs to the ClpX chaperone family. HslU subfamily. | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | 0.958 |
codV | clpQ | BSU16140 | BSU16150 | Site-specific tyrosine recombinase for chromosome partitioning; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | Two-component ATP-dependent protease (N-terminal serine protease); Protease subunit of a proteasome-like degradation complex. Belongs to the peptidase T1B family. HslV subfamily. | 0.983 |
codV | clpY | BSU16140 | BSU16160 | Site-specific tyrosine recombinase for chromosome partitioning; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | Two-component ATP-dependent protease (ATPase and chaperone); ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity; Belongs to the ClpX chaperone family. HslU subfamily. | 0.939 |
codV | codY | BSU16140 | BSU16170 | Site-specific tyrosine recombinase for chromosome partitioning; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | 0.802 |
codY | clpQ | BSU16170 | BSU16150 | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | Two-component ATP-dependent protease (N-terminal serine protease); Protease subunit of a proteasome-like degradation complex. Belongs to the peptidase T1B family. HslV subfamily. | 0.821 |
codY | clpY | BSU16170 | BSU16160 | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | Two-component ATP-dependent protease (ATPase and chaperone); ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity; Belongs to the ClpX chaperone family. HslU subfamily. | 0.958 |
codY | codV | BSU16170 | BSU16140 | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | Site-specific tyrosine recombinase for chromosome partitioning; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.802 |
codY | sinR | BSU16170 | BSU24610 | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | Master regulator of biofilm formation; Negative as well as positive regulator of alternate developmental processes that are induced at the end of vegetative growth in response to nutrient depletion. Binds to the alkaline protease (aprE) gene at two sites. Also acts as a repressor of the key sporulation gene spo0A. Negatively regulates transcription of the eps operon, which is responsible for the biosynthesis of an exopolysaccharide involved in biofilm formation; therefore it could govern the transition between a state in which bacteria swim or swarm and a state in which bacteria assemb [...] | 0.836 |
epsA | sinR | BSU34370 | BSU24610 | Modulator of protein tyrosine kinase EpsB; Evidence 2b: Function of strongly homologous gene; regulator. | Master regulator of biofilm formation; Negative as well as positive regulator of alternate developmental processes that are induced at the end of vegetative growth in response to nutrient depletion. Binds to the alkaline protease (aprE) gene at two sites. Also acts as a repressor of the key sporulation gene spo0A. Negatively regulates transcription of the eps operon, which is responsible for the biosynthesis of an exopolysaccharide involved in biofilm formation; therefore it could govern the transition between a state in which bacteria swim or swarm and a state in which bacteria assemb [...] | 0.974 |
epsA | sipW | BSU34370 | BSU24630 | Modulator of protein tyrosine kinase EpsB; Evidence 2b: Function of strongly homologous gene; regulator. | Type I signal peptidase; Required for the cleavage of the signal sequence of TasA and TapA, which are involved in biofilm formation. Belongs to the peptidase S26B family. | 0.994 |
epsA | tapA | BSU34370 | BSU24640 | Modulator of protein tyrosine kinase EpsB; Evidence 2b: Function of strongly homologous gene; regulator. | Lipoprotein for biofilm formation; Required for biofilm formation. Required for the proper anchoring and polymerization of TasA amyloid fibers at the cell surface. Is also a minor component of TasA fibers. | 0.994 |
panC | rpoB | BSU22420 | BSU01070 | Pantothenate synthetase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. | RNA polymerase (beta subunit); DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 0.519 |
rpoB | panC | BSU01070 | BSU22420 | RNA polymerase (beta subunit); DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | Pantothenate synthetase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. | 0.519 |
sinR | codY | BSU24610 | BSU16170 | Master regulator of biofilm formation; Negative as well as positive regulator of alternate developmental processes that are induced at the end of vegetative growth in response to nutrient depletion. Binds to the alkaline protease (aprE) gene at two sites. Also acts as a repressor of the key sporulation gene spo0A. Negatively regulates transcription of the eps operon, which is responsible for the biosynthesis of an exopolysaccharide involved in biofilm formation; therefore it could govern the transition between a state in which bacteria swim or swarm and a state in which bacteria assemb [...] | Transcriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. | 0.836 |
sinR | epsA | BSU24610 | BSU34370 | Master regulator of biofilm formation; Negative as well as positive regulator of alternate developmental processes that are induced at the end of vegetative growth in response to nutrient depletion. Binds to the alkaline protease (aprE) gene at two sites. Also acts as a repressor of the key sporulation gene spo0A. Negatively regulates transcription of the eps operon, which is responsible for the biosynthesis of an exopolysaccharide involved in biofilm formation; therefore it could govern the transition between a state in which bacteria swim or swarm and a state in which bacteria assemb [...] | Modulator of protein tyrosine kinase EpsB; Evidence 2b: Function of strongly homologous gene; regulator. | 0.974 |