STRINGSTRING
fbp fbp hprK hprK pckA pckA ccpA ccpA citB citB codY codY ptsI ptsI ptsH ptsH gyrB gyrB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
fbpFructose-1,6-bisphosphatase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (641 aa)
hprKSerine/threonine protein kinase/phosphorylase; Catalyzes the ATP- as well as the pyrophosphate-dependent phosphorylation of 'Ser-45' in HPr, a phosphocarrier protein of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS). HprK/P also catalyzes the pyrophosphate-producing, inorganic phosphate- dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr (P-Ser-HPr). The two antagonistic activities of HprK/P are regulated by several intracellular metabolites, which change their concentration in response to the absence or presence of rapidly metabolisable c [...] (310 aa)
pckAPhosphoenolpyruvate carboxykinase; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. (527 aa)
ccpATranscriptional regulator (Lacl family); Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P- Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons. (334 aa)
citBAconitate hydratase (aconitase); Involved in both the tricarboxylic acid (TCA) and methylcitric acid cycles. Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the rehydration of 2- methyl-cis-aconitate to produce 2-methylisocitrate. The apo form of AcnA functions as a RNA-binding regulatory protein which plays a role in the regulation of citrate concentration and in the sporulation. To prevent the accumulation of excessive levels of citrate, it binds near the 5' end of the citZ mRNA, decreasing its stability and thereby limiting the conce [...] (909 aa)
codYTranscriptional regulator, GTP and BCAA-dependent; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase and sporulation. It is a GTP- binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor. (259 aa)
ptsIPhosphotransferase system (PTS) enzyme I; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). (570 aa)
ptsHHistidine-containing phosphocarrier protein of the phosphotransferase system (PTS) (HPr protein); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain. (88 aa)
gyrBDNA gyrase (subunit B); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (638 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (32%) [HD]